Tutorial/Tutorial2s.thy
changeset 2695 e8736c1cdd7f
child 3132 87eca760dcba
equal deleted inserted replaced
2694:3485111c7d62 2695:e8736c1cdd7f
       
     1 
       
     2 theory Tutorial2s
       
     3 imports Lambda
       
     4 begin
       
     5 
       
     6 section {* Height of a Lambda-Term *}
       
     7 
       
     8 text {*
       
     9   The theory Lambda defines the notions of capture-avoiding
       
    10   substitution and the height of lambda terms. 
       
    11 *}
       
    12 
       
    13 thm height.simps
       
    14 thm subst.simps
       
    15 
       
    16 subsection {* EXERCISE 7 *}
       
    17 
       
    18 text {* 
       
    19   Lets prove a property about the height of substitutions.
       
    20 
       
    21   Assume that the height of a lambda-term is always greater 
       
    22   or equal to 1.
       
    23 *}
       
    24 
       
    25 lemma height_ge_one: 
       
    26   shows "1 \<le> height t"
       
    27 by (induct t rule: lam.induct) (auto)
       
    28 
       
    29 text {* Remove the sorries *}
       
    30 
       
    31 theorem
       
    32   shows "height (t[x ::= t']) \<le> height t - 1 + height t'"
       
    33 proof (nominal_induct t avoiding: x t' rule: lam.strong_induct)
       
    34   case (Var y)
       
    35   have "1 \<le> height t'" using height_ge_one by simp
       
    36   then show "height (Var y[x ::= t']) \<le> height (Var y) - 1 + height t'" by simp
       
    37 next    
       
    38   case (App t1 t2)
       
    39   have ih1: "height (t1[x::=t']) \<le> (height t1) - 1 + height t'" 
       
    40   and  ih2: "height (t2[x::=t']) \<le> (height t2) - 1 + height t'" by fact+
       
    41   then show "height ((App t1 t2)[x ::= t']) \<le> height (App t1 t2) - 1 + height t'" by simp  
       
    42 next
       
    43   case (Lam y t1)
       
    44   have ih: "height (t1[x::=t']) \<le> height t1 - 1 + height t'" by fact
       
    45   moreover
       
    46   have vc: "atom y \<sharp> x" "atom y \<sharp> t'" by fact+ -- {* usual variable convention *}
       
    47   ultimately 
       
    48   show "height ((Lam [y].t1)[x ::= t']) \<le> height (Lam [y].t1) - 1 + height t'" by simp
       
    49 qed
       
    50 
       
    51 
       
    52 section {* Types and the Weakening Lemma *}
       
    53 
       
    54 nominal_datatype ty =
       
    55   tVar "string"
       
    56 | tArr "ty" "ty" (infixr "\<rightarrow>" 100)
       
    57 
       
    58 
       
    59 text {* 
       
    60   Having defined them as nominal datatypes gives us additional
       
    61   definitions and theorems that come with types (see below).
       
    62  
       
    63   We next define the type of typing contexts, a predicate that
       
    64   defines valid contexts (i.e. lists that contain only unique
       
    65   variables) and the typing judgement.
       
    66 *}
       
    67 
       
    68 type_synonym ty_ctx = "(name \<times> ty) list"
       
    69 
       
    70 inductive
       
    71   valid :: "ty_ctx \<Rightarrow> bool"
       
    72 where
       
    73   v1[intro]: "valid []"
       
    74 | v2[intro]: "\<lbrakk>valid \<Gamma>; atom x \<sharp> \<Gamma>\<rbrakk>\<Longrightarrow> valid ((x, T) # \<Gamma>)"
       
    75 
       
    76 
       
    77 inductive
       
    78   typing :: "ty_ctx \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60, 60, 60] 60) 
       
    79 where
       
    80   t_Var[intro]:  "\<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
       
    81 | t_App[intro]:  "\<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2; \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2"
       
    82 | t_Lam[intro]:  "\<lbrakk>atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam [x].t : T1 \<rightarrow> T2"
       
    83 
       
    84 
       
    85 text {*
       
    86   The predicate atom x \<sharp> \<Gamma>, read as x fresh for \<Gamma>, is defined by 
       
    87   Nominal Isabelle. It is defined for lambda-terms, products, lists etc. 
       
    88   For example we have:
       
    89 *}
       
    90 
       
    91 lemma
       
    92   fixes x::"name"
       
    93   shows "atom x \<sharp> Lam [x].t"
       
    94   and   "atom x \<sharp> (t1, t2) \<Longrightarrow> atom x \<sharp> App t1 t2"
       
    95   and   "atom x \<sharp> Var y \<Longrightarrow> atom x \<sharp> y" 
       
    96   and   "\<lbrakk>atom x \<sharp> t1; atom x \<sharp> t2\<rbrakk> \<Longrightarrow> atom x \<sharp> (t1, t2)"
       
    97   and   "\<lbrakk>atom x \<sharp> l1; atom x \<sharp> l2\<rbrakk> \<Longrightarrow> atom x \<sharp> (l1 @ l2)"
       
    98   and   "atom x \<sharp> y \<Longrightarrow> x \<noteq> y"
       
    99   by (simp_all add: lam.fresh fresh_append fresh_at_base) 
       
   100 
       
   101 text {* 
       
   102   We can also prove that every variable is fresh for a type. 
       
   103 *}
       
   104 
       
   105 lemma ty_fresh:
       
   106   fixes x::"name"
       
   107   and   T::"ty"
       
   108   shows "atom x \<sharp> T"
       
   109 by (induct T rule: ty.induct)
       
   110    (simp_all add: ty.fresh pure_fresh)
       
   111 
       
   112 text {* 
       
   113   In order to state the weakening lemma in a convenient form, we 
       
   114   using the following abbreviation. Abbreviations behave like 
       
   115   definitions, except that they are always automatically folded 
       
   116   and unfolded.
       
   117 *}
       
   118 
       
   119 abbreviation
       
   120   "sub_ty_ctx" :: "ty_ctx \<Rightarrow> ty_ctx \<Rightarrow> bool" ("_ \<sqsubseteq> _" [60, 60] 60) 
       
   121 where
       
   122   "\<Gamma>1 \<sqsubseteq> \<Gamma>2 \<equiv> \<forall>x. x \<in> set \<Gamma>1 \<longrightarrow> x \<in> set \<Gamma>2"
       
   123 
       
   124 
       
   125 subsection {* EXERCISE 8 *}
       
   126 
       
   127 text {*
       
   128   Fill in the details and give a proof of the weakening lemma. 
       
   129 *}
       
   130 
       
   131 lemma 
       
   132   assumes a: "\<Gamma>1 \<turnstile> t : T"
       
   133   and     b: "valid \<Gamma>2" 
       
   134   and     c: "\<Gamma>1 \<sqsubseteq> \<Gamma>2"
       
   135   shows "\<Gamma>2 \<turnstile> t : T"
       
   136 using a b c
       
   137 proof (induct arbitrary: \<Gamma>2)
       
   138   case (t_Var \<Gamma>1 x T)
       
   139   have a1: "valid \<Gamma>1" by fact
       
   140   have a2: "(x, T) \<in> set \<Gamma>1" by fact
       
   141   have a3: "valid \<Gamma>2" by fact
       
   142   have a4: "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact
       
   143 
       
   144   show "\<Gamma>2 \<turnstile> Var x : T" sorry
       
   145 next
       
   146   case (t_Lam x \<Gamma>1 T1 t T2) 
       
   147   have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; (x, T1) # \<Gamma>1 \<sqsubseteq> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t : T2" by fact
       
   148   have a0: "atom x \<sharp> \<Gamma>1" by fact
       
   149   have a1: "valid \<Gamma>2" by fact
       
   150   have a2: "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact
       
   151 
       
   152   show "\<Gamma>2 \<turnstile> Lam [x].t : T1 \<rightarrow> T2" sorry
       
   153 qed (auto) -- {* the application case is automatic*}
       
   154 
       
   155 
       
   156 text {* 
       
   157   Despite the frequent claim that the weakening lemma is trivial,
       
   158   routine or obvious, the proof in the lambda-case does not go 
       
   159   through smoothly. Painful variable renamings seem to be necessary. 
       
   160   But the proof using renamings is horribly complicated (see below). 
       
   161 *}
       
   162 
       
   163 equivariance valid
       
   164 equivariance typing
       
   165 
       
   166 lemma weakening_NOT_TO_BE_TRIED_AT_HOME: 
       
   167   assumes a: "\<Gamma>1 \<turnstile> t : T"
       
   168   and     b: "valid \<Gamma>2" 
       
   169   and     c: "\<Gamma>1 \<sqsubseteq> \<Gamma>2"
       
   170   shows "\<Gamma>2 \<turnstile> t : T"
       
   171 using a b c
       
   172 proof (induct arbitrary: \<Gamma>2)
       
   173   -- {* lambda case *}
       
   174   case (t_Lam x \<Gamma>1 T1 t T2) 
       
   175   have fc0: "atom x \<sharp> \<Gamma>1" by fact
       
   176   have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; (x, T1) # \<Gamma>1 \<sqsubseteq> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t : T2" by fact
       
   177   -- {* we choose a fresh variable *}
       
   178   obtain c::"name" where fc1: "atom c \<sharp> (x, t, \<Gamma>1, \<Gamma>2)" by (rule obtain_fresh)
       
   179   -- {* we alpha-rename the abstraction *}
       
   180   have "Lam [c].((c \<leftrightarrow> x) \<bullet> t) = Lam [x].t" using fc1
       
   181     by (auto simp add: lam.eq_iff Abs1_eq_iff flip_def)
       
   182   moreover
       
   183   -- {* we can then alpha rename the goal *}
       
   184   have "\<Gamma>2 \<turnstile> Lam [c].((c \<leftrightarrow> x) \<bullet> t) : T1 \<rightarrow> T2" 
       
   185   proof - 
       
   186     -- {* we need to establish *} 
       
   187     -- {* (1)   (x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2) *}
       
   188     -- {* (2)   valid ((x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2)) *}
       
   189     have "(1)": "(x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2)" 
       
   190     proof -
       
   191       have "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact
       
   192       then have "(c \<leftrightarrow> x) \<bullet> ((x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2))" using fc0 fc1
       
   193         by (perm_simp) (simp add: flip_fresh_fresh)
       
   194       then show "(x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2)" by (rule permute_boolE)
       
   195     qed
       
   196     moreover 
       
   197     have "(2)": "valid ((x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2))" 
       
   198     proof -
       
   199       have "valid \<Gamma>2" by fact
       
   200       then show "valid ((x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2))" using fc1
       
   201         by (auto simp add: fresh_permute_left atom_eqvt valid.eqvt)	
       
   202     qed
       
   203     -- {* these two facts give us by induction hypothesis the following *}
       
   204     ultimately have "(x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2) \<turnstile> t : T2" using ih by simp 
       
   205     -- {* we now apply renamings to get to our goal *}
       
   206     then have "(c \<leftrightarrow> x) \<bullet> ((x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2) \<turnstile> t : T2)" by (rule permute_boolI)
       
   207     then have "(c, T1) # \<Gamma>2 \<turnstile> ((c \<leftrightarrow> x) \<bullet> t) : T2" using fc1
       
   208       by (perm_simp) (simp add: flip_fresh_fresh ty_fresh)
       
   209     then show "\<Gamma>2 \<turnstile> Lam [c].((c \<leftrightarrow> x) \<bullet> t) : T1 \<rightarrow> T2" using fc1 by auto
       
   210   qed
       
   211   ultimately show "\<Gamma>2 \<turnstile> Lam [x].t : T1 \<rightarrow> T2" by simp
       
   212 qed (auto) -- {* var and app cases, luckily, are automatic *}
       
   213 
       
   214 
       
   215 text {* 
       
   216   The remedy is to use again a stronger induction principle that
       
   217   has the usual "variable convention" already build in. The
       
   218   following command derives this induction principle for the typing
       
   219   relation. (We shall explain what happens here later.)
       
   220 *}
       
   221 
       
   222 nominal_inductive typing
       
   223   avoids t_Lam: "x"
       
   224   unfolding fresh_star_def
       
   225   by (simp_all add: fresh_Pair lam.fresh ty_fresh)
       
   226 
       
   227 text {* Compare the two induction principles *}
       
   228 
       
   229 thm typing.induct
       
   230 thm typing.strong_induct -- {* note the additional assumption {atom x} \<sharp> c *}
       
   231 
       
   232 text {* 
       
   233   We can use the stronger induction principle by replacing
       
   234   the line
       
   235 
       
   236       proof (induct arbitrary: \<Gamma>2)
       
   237 
       
   238   with 
       
   239   
       
   240       proof (nominal_induct avoiding: \<Gamma>2 rule: typing.strong_induct)
       
   241 
       
   242   Try now the proof.
       
   243 *}
       
   244  
       
   245 subsection {* EXERCISE 9 *} 
       
   246 
       
   247 lemma weakening: 
       
   248   assumes a: "\<Gamma>1 \<turnstile> t : T"
       
   249   and     b: "valid \<Gamma>2" 
       
   250   and     c: "\<Gamma>1 \<sqsubseteq> \<Gamma>2"
       
   251   shows "\<Gamma>2 \<turnstile> t : T"
       
   252 using a b c
       
   253 proof (nominal_induct avoiding: \<Gamma>2 rule: typing.strong_induct)
       
   254   case (t_Var \<Gamma>1 x T)  -- {* variable case is as before *}
       
   255   have "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact 
       
   256   moreover  
       
   257   have "valid \<Gamma>2" by fact 
       
   258   moreover 
       
   259   have "(x, T)\<in> set \<Gamma>1" by fact
       
   260   ultimately show "\<Gamma>2 \<turnstile> Var x : T" by auto
       
   261 next
       
   262   case (t_Lam x \<Gamma>1 T1 t T2) 
       
   263   have vc: "atom x \<sharp> \<Gamma>2" by fact  -- {* additional fact afforded by the strong induction *}
       
   264   have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; (x, T1) # \<Gamma>1 \<sqsubseteq> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t : T2" by fact
       
   265   have a0: "atom x \<sharp> \<Gamma>1" by fact
       
   266   have a1: "valid \<Gamma>2" by fact
       
   267   have a2: "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact
       
   268   have "valid ((x, T1) # \<Gamma>2)" using a1 vc by auto
       
   269   moreover
       
   270   have "(x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # \<Gamma>2" using a2 by auto
       
   271   ultimately 
       
   272   have "(x, T1) # \<Gamma>2 \<turnstile> t : T2" using ih by simp 
       
   273   then show "\<Gamma>2 \<turnstile> Lam [x].t : T1 \<rightarrow> T2" using vc by auto
       
   274 qed (auto) -- {* app case *}
       
   275 
       
   276 
       
   277 
       
   278 section {* Unbind and an Inconsistency Example *}
       
   279 
       
   280 text {*
       
   281   You might wonder why we had to discharge some proof
       
   282   obligations in order to obtain the stronger induction
       
   283   principle for the typing relation. (Remember for
       
   284   lambda terms this stronger induction principle is
       
   285   derived automatically.)
       
   286   
       
   287   This proof obligation is really needed, because if we 
       
   288   assume universally a stronger induction principle, then 
       
   289   in some cases we can derive false. This is "shown" below.
       
   290 *}
       
   291 
       
   292 
       
   293 inductive
       
   294   unbind :: "lam \<Rightarrow> lam \<Rightarrow> bool" (infixr "\<mapsto>" 60)
       
   295 where
       
   296   u_Var[intro]: "Var x \<mapsto> Var x"
       
   297 | u_App[intro]: "App t1 t2 \<mapsto> App t1 t2"
       
   298 | u_Lam[intro]: "t \<mapsto> t' \<Longrightarrow> Lam [x].t \<mapsto> t'"
       
   299 
       
   300 text {* It is clear that the following judgement holds. *}
       
   301 
       
   302 lemma unbind_simple:
       
   303   shows "Lam [x].Var x \<mapsto> Var x"
       
   304   by auto
       
   305 
       
   306 text {*
       
   307   Now lets derive the strong induction principle for unbind.
       
   308   The point is that we cannot establish the proof obligations,
       
   309   therefore we force Isabelle to accept them by using "sorry".
       
   310 *}
       
   311 
       
   312 equivariance unbind
       
   313 nominal_inductive unbind
       
   314   avoids u_Lam: "x"
       
   315   sorry
       
   316 
       
   317 text {*
       
   318   Using the stronger induction principle, we can establish
       
   319   th follwoing bogus property.
       
   320 *}
       
   321 
       
   322 lemma unbind_fake:
       
   323   fixes y::"name"
       
   324   assumes a: "t \<mapsto> t'"
       
   325   and     b: "atom y \<sharp> t"
       
   326   shows "atom y \<sharp> t'"
       
   327 using a b
       
   328 proof (nominal_induct avoiding: y rule: unbind.strong_induct)
       
   329   case (u_Lam t t' x y)
       
   330   have ih: "atom y \<sharp> t \<Longrightarrow> atom y \<sharp> t'" by fact
       
   331   have asm: "atom y \<sharp> Lam [x]. t" by fact
       
   332   have fc: "atom x \<sharp> y" by fact
       
   333   then have in_eq: "x \<noteq> y" by (simp add: fresh_at_base)
       
   334   then have "atom y \<sharp> t" using asm by (simp add: lam.fresh)
       
   335   then show "atom y \<sharp> t'" using ih by simp
       
   336 qed
       
   337 
       
   338 text {*
       
   339   And from this follows the inconsitency:
       
   340 *}
       
   341 
       
   342 lemma
       
   343   shows "False"
       
   344 proof -
       
   345   have "atom x \<sharp> Lam [x]. Var x" by (simp add: lam.fresh)
       
   346   moreover 
       
   347   have "Lam [x]. Var x \<mapsto> Var x" using unbind_simple by auto
       
   348   ultimately 
       
   349   have "atom x \<sharp> Var x" using unbind_fake by auto
       
   350   then have "x \<noteq> x" by (simp add: lam.fresh fresh_at_base)
       
   351   then show "False" by simp
       
   352 qed
       
   353 
       
   354 end