Nominal/Ex/Lambda.thy
changeset 2165 e838f7d90f81
parent 2120 2786ff1df475
child 2167 687369ae8f81
equal deleted inserted replaced
2149:95aac598a526 2165:e838f7d90f81
     1 theory Lambda
     1 theory Lambda
     2 imports "../NewParser"
     2 imports "../NewParser" Quotient_Option
     3 begin
     3 begin
     4 
     4 
     5 atom_decl name
     5 atom_decl name
     6 
     6 
     7 nominal_datatype lam =
     7 nominal_datatype lam =
   470 
   470 
   471 (*
   471 (*
   472 nominal_inductive typing
   472 nominal_inductive typing
   473 *)
   473 *)
   474 
   474 
       
   475 (* Substitution *)
       
   476 
       
   477 definition new where
       
   478   "new s = (THE x. \<forall>a \<in> s. atom x \<noteq> a)"
       
   479 
       
   480 primrec match_Var_raw where
       
   481   "match_Var_raw (Var_raw x) = Some x"
       
   482 | "match_Var_raw (App_raw x y) = None"
       
   483 | "match_Var_raw (Lam_raw n t) = None"
       
   484 
       
   485 quotient_definition
       
   486   "match_Var :: lam \<Rightarrow> name option"
       
   487 is match_Var_raw
       
   488 
       
   489 lemma [quot_respect]: "(alpha_lam_raw ===> op =) match_Var_raw match_Var_raw"
       
   490   apply rule
       
   491   apply (induct_tac a b rule: alpha_lam_raw.induct)
       
   492   apply simp_all
       
   493   done
       
   494 
       
   495 lemmas match_Var_simps = match_Var_raw.simps[quot_lifted]
       
   496 
       
   497 primrec match_App_raw where
       
   498   "match_App_raw (Var_raw x) = None"
       
   499 | "match_App_raw (App_raw x y) = Some (x, y)"
       
   500 | "match_App_raw (Lam_raw n t) = None"
       
   501 
       
   502 quotient_definition
       
   503   "match_App :: lam \<Rightarrow> (lam \<times> lam) option"
       
   504 is match_App_raw
       
   505 
       
   506 lemma [quot_respect]:
       
   507   "(alpha_lam_raw ===> option_rel (prod_rel alpha_lam_raw alpha_lam_raw)) match_App_raw match_App_raw"
       
   508   apply (intro fun_relI)
       
   509   apply (induct_tac a b rule: alpha_lam_raw.induct)
       
   510   apply simp_all
       
   511   done
       
   512 
       
   513 lemmas match_App_simps = match_App_raw.simps[quot_lifted]
       
   514 
       
   515 primrec match_Lam_raw where
       
   516   "match_Lam_raw (S :: atom set) (Var_raw x) = None"
       
   517 | "match_Lam_raw S (App_raw x y) = None"
       
   518 | "match_Lam_raw S (Lam_raw n t) = (let z = new (S \<union> (fv_lam_raw t - {atom n})) in Some (z, (n \<leftrightarrow> z) \<bullet> t))"
       
   519 
       
   520 quotient_definition
       
   521   "match_Lam :: (atom set) \<Rightarrow> lam \<Rightarrow> (name \<times> lam) option"
       
   522 is match_Lam_raw
       
   523 
       
   524 lemma [quot_respect]:
       
   525   "(op = ===> alpha_lam_raw ===> option_rel (prod_rel op = alpha_lam_raw)) match_Lam_raw match_Lam_raw"
       
   526   proof (intro fun_relI, clarify)
       
   527     fix S t s
       
   528     assume a: "alpha_lam_raw t s"
       
   529     show "option_rel (prod_rel op = alpha_lam_raw) (match_Lam_raw S t) (match_Lam_raw S s)"
       
   530       using a proof (induct t s rule: alpha_lam_raw.induct)
       
   531       case goal1 show ?case by simp
       
   532     next
       
   533       case goal2 show ?case by simp
       
   534     next
       
   535       case (goal3 x t y s)
       
   536       then obtain p where "({atom x}, t) \<approx>gen (\<lambda>x1 x2. alpha_lam_raw x1 x2 \<and>
       
   537                               option_rel (prod_rel op = alpha_lam_raw) (match_Lam_raw S x1)
       
   538                                (match_Lam_raw S x2)) fv_lam_raw p ({atom y}, s)" ..
       
   539       then have
       
   540         c: "fv_lam_raw t - {atom x} = fv_lam_raw s - {atom y}" and
       
   541         d: "(fv_lam_raw t - {atom x}) \<sharp>* p" and
       
   542         e: "alpha_lam_raw (p \<bullet> t) s" and
       
   543         f: "option_rel (prod_rel op = alpha_lam_raw) (match_Lam_raw S (p \<bullet> t)) (match_Lam_raw S s)" and
       
   544         g: "p \<bullet> {atom x} = {atom y}" unfolding alphas(1) by - (elim conjE, assumption)+
       
   545       let ?z = "new (S \<union> (fv_lam_raw t - {atom x}))"
       
   546       have h: "?z = new (S \<union> (fv_lam_raw s - {atom y}))" using c by simp
       
   547       show ?case
       
   548         unfolding match_Lam_raw.simps Let_def option_rel.simps prod_rel.simps split_conv
       
   549       proof
       
   550         show "?z = new (S \<union> (fv_lam_raw s - {atom y}))" by (fact h)
       
   551       next
       
   552         have "atom y \<sharp> p" sorry
       
   553         have "fv_lam_raw t \<sharp>* ((x \<leftrightarrow> y) \<bullet> p)" sorry
       
   554         then have "alpha_lam_raw (((x \<leftrightarrow> y) \<bullet> p) \<bullet> t) t" sorry
       
   555         have "alpha_lam_raw (p \<bullet> t) ((x \<leftrightarrow> y) \<bullet> t)" sorry
       
   556         have "alpha_lam_raw t ((x \<leftrightarrow> y) \<bullet> s)" sorry
       
   557         then have "alpha_lam_raw ((x \<leftrightarrow> ?z) \<bullet> t) ((y \<leftrightarrow> ?z) \<bullet> s)" using eqvts(15) sorry
       
   558         then show "alpha_lam_raw ((x \<leftrightarrow> new (S \<union> (fv_lam_raw t - {atom x}))) \<bullet> t)
       
   559                   ((y \<leftrightarrow> new (S \<union> (fv_lam_raw s - {atom y}))) \<bullet> s)" unfolding h .
       
   560       qed
       
   561     qed
       
   562   qed
       
   563 
       
   564 lemmas match_Lam_simps = match_Lam_raw.simps[quot_lifted]
       
   565 
       
   566 lemma app_some: "match_App x = Some (a, b) \<Longrightarrow> x = App a b"
       
   567 by (induct x rule: lam.induct) (simp_all add: match_App_simps)
       
   568 
       
   569 lemma lam_some: "match_Lam S x = Some (z, s) \<Longrightarrow> x = Lam z s \<and> atom z \<sharp> S"
       
   570   apply (induct x rule: lam.induct)
       
   571   apply (simp_all add: match_Lam_simps)
       
   572   apply (simp add: Let_def)
       
   573   apply (erule conjE)
       
   574   apply (thin_tac "match_Lam S lam = Some (z, s) \<Longrightarrow> lam = Lam z s \<and> atom z \<sharp> S")
       
   575   apply (rule conjI)
       
   576   apply (simp add: lam.eq_iff)
       
   577   apply (rule_tac x="(name \<leftrightarrow> z)" in exI)
       
   578   apply (simp add: alphas)
       
   579   apply (simp add: eqvts)
       
   580   apply (simp only: lam.fv(3)[symmetric])
       
   581   apply (subgoal_tac "Lam name lam = Lam z s")
       
   582   apply (simp del: lam.fv)
       
   583   prefer 3
       
   584   apply (thin_tac "(name \<leftrightarrow> new (S \<union> (fv_lam lam - {atom name}))) \<bullet> lam = s")
       
   585   apply (simp only: new_def)
       
   586   apply (subgoal_tac "\<forall>a \<in> S. atom z \<noteq> a")
       
   587   apply (simp only: fresh_def)
       
   588   
       
   589   thm new_def
       
   590   apply simp
       
   591 
       
   592 
       
   593 function subst where
       
   594 "subst v s t = (
       
   595   case match_Var t of Some n \<Rightarrow> if n = v then s else Var n | None \<Rightarrow>
       
   596   case match_App t of Some (l, r) \<Rightarrow> App (subst v s l) (subst v s r) | None \<Rightarrow>
       
   597   case match_Lam (supp (v,s)) t of Some (n, t) \<Rightarrow> Lam n (subst v s t) | None \<Rightarrow> undefined)"
       
   598 by pat_completeness auto
       
   599 
       
   600 termination apply (relation "measure (\<lambda>(_, _, t). size t)")
       
   601 apply auto[1]
       
   602 defer
       
   603 apply (case_tac a) apply simp
       
   604 apply (frule app_some) apply simp
       
   605 apply (case_tac a) apply simp
       
   606 apply (frule app_some) apply simp
       
   607 apply (case_tac a) apply simp
       
   608 apply (frule lam_some)
       
   609  apply simp
       
   610 done
       
   611 
       
   612 lemmas lam_exhaust = lam_raw.exhaust[quot_lifted]
       
   613 
       
   614 lemma subst_eqvt:
       
   615   "p \<bullet> (subst v s t) = subst (p \<bullet> v) (p \<bullet> s) (p \<bullet> t)"
       
   616   proof (induct v s t rule: subst.induct)
       
   617     case (1 v s t)
       
   618     show ?case proof (cases t rule: lam_exhaust)
       
   619       fix n
       
   620       assume "t = Var n"
       
   621       then show ?thesis by (simp add: match_Var_simps)
       
   622     next
       
   623       fix l r
       
   624       assume "t = App l r"
       
   625       then show ?thesis
       
   626         apply (simp only:)
       
   627         apply (subst subst.simps)
       
   628         apply (subst match_Var_simps)
       
   629         apply (simp only: option.cases)
       
   630         apply (subst match_App_simps)
       
   631         apply (simp only: option.cases)
       
   632         apply (simp only: prod.cases)
       
   633         apply (simp only: lam.perm)
       
   634         apply (subst (3) subst.simps)
       
   635         apply (subst match_Var_simps)
       
   636        apply (simp only: option.cases)
       
   637         apply (subst match_App_simps)
       
   638         apply (simp only: option.cases)
       
   639         apply (simp only: prod.cases)
       
   640         apply (subst 1(2)[of "(l, r)" "l" "r"])
       
   641         apply (simp add: match_Var_simps)
       
   642         apply (simp add: match_App_simps)
       
   643         apply (rule refl)
       
   644         apply (subst 1(3)[of "(l, r)" "l" "r"])
       
   645         apply (simp add: match_Var_simps)
       
   646         apply (simp add: match_App_simps)
       
   647         apply (rule refl)
       
   648         apply (rule refl)
       
   649         done
       
   650     next
       
   651       fix n t'
       
   652       assume "t = Lam n t'"
       
   653       then show ?thesis
       
   654         apply (simp only: )
       
   655         apply (simp only: lam.perm)
       
   656         apply (subst subst.simps)
       
   657         apply (subst match_Var_simps)
       
   658         apply (simp only: option.cases)
       
   659         apply (subst match_App_simps)
       
   660         apply (simp only: option.cases)
       
   661         apply (subst match_Lam_simps)
       
   662         apply (simp only: Let_def)
       
   663         apply (simp only: option.cases)
       
   664         apply (simp only: prod.cases)
       
   665         apply (subst (2) subst.simps)
       
   666         apply (subst match_Var_simps)
       
   667         apply (simp only: option.cases)
       
   668         apply (subst match_App_simps)
       
   669         apply (simp only: option.cases)
       
   670         apply (subst match_Lam_simps)
       
   671         apply (simp only: Let_def)
       
   672         apply (simp only: option.cases)
       
   673         apply (simp only: prod.cases)
       
   674         apply (simp only: lam.perm)
       
   675         apply (simp only: lam.eq_iff)
       
   676         sorry
       
   677     qed
       
   678   qed
       
   679 
       
   680 lemma size_no_change: "size (p \<bullet> (t :: lam_raw)) = size t"
       
   681   by (induct t) simp_all
       
   682 
       
   683 function
       
   684   subst_raw :: "lam_raw \<Rightarrow> name \<Rightarrow> lam_raw \<Rightarrow> lam_raw"
       
   685 where
       
   686   "subst_raw (Var_raw x) y s = (if x=y then s else (Var_raw x))"
       
   687 | "subst_raw (App_raw l r) y s = App_raw (subst_raw l y s) (subst_raw r y s)"
       
   688 | "subst_raw (Lam_raw x t) y s =
       
   689       Lam_raw (new ({atom y} \<union> fv_lam_raw s \<union> fv_lam_raw t - {atom x}))
       
   690        (subst_raw ((x \<leftrightarrow> (new ({atom y} \<union> fv_lam_raw s \<union> fv_lam_raw t - {atom x}))) \<bullet> t) y s)"
       
   691   by (pat_completeness, auto)
       
   692 termination
       
   693   apply (relation "measure (\<lambda>(t, y, s). (size t))")
       
   694   apply (auto simp add: size_no_change)
       
   695   done
       
   696 
       
   697 lemma fv_subst[simp]: "fv_lam_raw (subst_raw t y s) =
       
   698   (if (atom y \<in> fv_lam_raw t) then fv_lam_raw s \<union> (fv_lam_raw t - {atom y}) else fv_lam_raw t)"
       
   699   apply (induct t arbitrary: s)
       
   700   apply (auto simp add: supp_at_base)[1]
       
   701   apply (auto simp add: supp_at_base)[1]
       
   702   apply (simp only: fv_lam_raw.simps)
       
   703   apply simp
       
   704   apply (rule conjI)
       
   705   apply clarify
       
   706   oops
       
   707 
       
   708 lemma new_eqvt[eqvt]: "p \<bullet> (new s) = new (p \<bullet> s)"
       
   709   oops
       
   710 
       
   711 lemma subst_var_raw_eqvt[eqvt]: "p \<bullet> (subst_raw t y s) = subst_raw (p \<bullet> t) (p \<bullet> y) (p \<bullet> s)"
       
   712   apply (induct t arbitrary: p y s)
       
   713   apply simp_all
       
   714   apply(perm_simp)
       
   715   oops
       
   716 
       
   717 lemma subst_id: "alpha_lam_raw (subst_raw x d (Var_raw d)) x"
       
   718   apply (induct x arbitrary: d)
       
   719   apply (simp_all add: alpha_lam_raw.intros)
       
   720   apply (rule alpha_lam_raw.intros)
       
   721   apply (rule_tac x="(name \<leftrightarrow> new (insert (atom d) (supp d)))" in exI)
       
   722   apply (simp add: alphas)
       
   723   oops
       
   724 
       
   725 quotient_definition
       
   726   subst2 ("_ [ _ ::= _ ]" [100,100,100] 100)
       
   727 where
       
   728   "subst2 :: lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" is "subst_raw"
       
   729 
       
   730 lemmas fv_rsp = quot_respect(10)[simplified]
       
   731 
       
   732 lemma subst_rsp_pre1:
       
   733   assumes a: "alpha_lam_raw a b"
       
   734   shows "alpha_lam_raw (subst_raw a y c) (subst_raw b y c)"
       
   735   using a
       
   736   apply (induct a b arbitrary: c y rule: alpha_lam_raw.induct)
       
   737   apply (simp add: equivp_reflp[OF lam_equivp])
       
   738   apply (simp add: alpha_lam_raw.intros)
       
   739   apply (simp only: alphas)
       
   740   apply clarify
       
   741   apply (simp only: subst_raw.simps)
       
   742   apply (rule alpha_lam_raw.intros)
       
   743   apply (simp only: alphas)
       
   744   sorry
       
   745 
       
   746 lemma subst_rsp_pre2:
       
   747   assumes a: "alpha_lam_raw a b"
       
   748   shows "alpha_lam_raw (subst_raw c y a) (subst_raw c y b)"
       
   749   using a
       
   750   apply (induct c arbitrary: a b y)
       
   751   apply (simp add: equivp_reflp[OF lam_equivp])
       
   752   apply (simp add: alpha_lam_raw.intros)
       
   753   apply simp
       
   754   apply (rule alpha_lam_raw.intros)
       
   755   apply (rule_tac x="((new (insert (atom y) (fv_lam_raw a \<union> fv_lam_raw c) -
       
   756                        {atom name}))\<leftrightarrow>(new (insert (atom y) (fv_lam_raw b \<union> fv_lam_raw c) -
       
   757                         {atom name})))" in exI)
       
   758   apply (simp only: alphas)
       
   759   apply (tactic {* split_conj_tac 1 *})
       
   760   prefer 3
       
   761   sorry
       
   762 
       
   763 lemma [quot_respect]:
       
   764   "(alpha_lam_raw ===> op = ===> alpha_lam_raw ===> alpha_lam_raw) subst_raw subst_raw"
       
   765   proof (intro fun_relI, simp)
       
   766     fix a b c d :: lam_raw
       
   767     fix y :: name
       
   768     assume a: "alpha_lam_raw a b"
       
   769     assume b: "alpha_lam_raw c d"
       
   770     have c: "alpha_lam_raw (subst_raw a y c) (subst_raw b y c)" using subst_rsp_pre1 a by simp
       
   771     then have d: "alpha_lam_raw (subst_raw b y c) (subst_raw b y d)" using subst_rsp_pre2 b by simp
       
   772     show "alpha_lam_raw (subst_raw a y c) (subst_raw b y d)"
       
   773       using c d equivp_transp[OF lam_equivp] by blast
       
   774   qed
       
   775 
       
   776 lemma simp3:
       
   777   "x \<noteq> y \<Longrightarrow> atom x \<notin> fv_lam_raw s \<Longrightarrow> alpha_lam_raw (subst_raw (Lam_raw x t) y s) (Lam_raw x (subst_raw t y s))"
       
   778   apply simp
       
   779   apply (rule alpha_lam_raw.intros)
       
   780   apply (rule_tac x ="(x \<leftrightarrow> (new (insert (atom y) (fv_lam_raw s \<union> fv_lam_raw t) -
       
   781                     {atom x})))" in exI)
       
   782   apply (simp only: alphas)
       
   783   sorry
       
   784 
       
   785 lemmas subst_simps = subst_raw.simps(1-2)[quot_lifted,no_vars]
       
   786   simp3[quot_lifted,simplified lam.supp,simplified fresh_def[symmetric], no_vars]
       
   787 
       
   788 
       
   789 thm subst_raw.simps(3)[quot_lifted,no_vars]
   475 
   790 
   476 end
   791 end
   477 
   792 
   478 
   793 
   479 
   794