QuotScript.thy
changeset 113 e3a963e6418b
parent 112 0d6d37d0589d
child 126 9cb8f9a59402
equal deleted inserted replaced
112:0d6d37d0589d 113:e3a963e6418b
   305 
   305 
   306 lemma REP_ABS_RSP:
   306 lemma REP_ABS_RSP:
   307   assumes q: "QUOTIENT R Abs Rep"
   307   assumes q: "QUOTIENT R Abs Rep"
   308   and     a: "R x1 x2"
   308   and     a: "R x1 x2"
   309   shows "R x1 (Rep (Abs x2))"
   309   shows "R x1 (Rep (Abs x2))"
   310 using a
   310   and   "R (Rep (Abs x1)) x2"
   311 by (metis QUOTIENT_REL[OF q] QUOTIENT_ABS_REP[OF q] QUOTIENT_REP_REFL[OF q])
   311 proof -
       
   312   show "R x1 (Rep (Abs x2))" 
       
   313     using q a by (metis QUOTIENT_REL[OF q] QUOTIENT_ABS_REP[OF q] QUOTIENT_REP_REFL[OF q])
       
   314 next
       
   315   show "R (Rep (Abs x1)) x2"
       
   316     using q a by (metis QUOTIENT_REL[OF q] QUOTIENT_ABS_REP[OF q] QUOTIENT_REP_REFL[OF q] QUOTIENT_SYM[of q])
       
   317 qed
   312 
   318 
   313 (* ----------------------------------------------------- *)
   319 (* ----------------------------------------------------- *)
   314 (* Quantifiers: FORALL, EXISTS, EXISTS_UNIQUE,           *)
   320 (* Quantifiers: FORALL, EXISTS, EXISTS_UNIQUE,           *)
   315 (*              RES_FORALL, RES_EXISTS, RES_EXISTS_EQUIV *)
   321 (*              RES_FORALL, RES_EXISTS, RES_EXISTS_EQUIV *)
   316 (* ----------------------------------------------------- *)
   322 (* ----------------------------------------------------- *)