Quot/QuotScript.thy
changeset 920 dae99175f584
parent 919 c46b6abad24b
child 921 dae038c8cd69
equal deleted inserted replaced
919:c46b6abad24b 920:dae99175f584
     1 theory QuotScript
       
     2 imports Plain ATP_Linkup Predicate
       
     3 begin
       
     4 
       
     5 definition
       
     6   "equivp E \<equiv> \<forall>x y. E x y = (E x = E y)"
       
     7 
       
     8 definition
       
     9   "reflp E \<equiv> \<forall>x. E x x"
       
    10 
       
    11 definition
       
    12   "symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"
       
    13 
       
    14 definition
       
    15   "transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"
       
    16 
       
    17 lemma equivp_reflp_symp_transp:
       
    18   shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
       
    19   unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
       
    20   by (blast)
       
    21 
       
    22 lemma equivp_reflp:
       
    23   shows "equivp E \<Longrightarrow> (\<And>x. E x x)"
       
    24   by (simp only: equivp_reflp_symp_transp reflp_def)
       
    25 
       
    26 lemma equivp_symp:
       
    27   shows "equivp E \<Longrightarrow> (\<And>x y. E x y \<Longrightarrow> E y x)"
       
    28   by (metis equivp_reflp_symp_transp symp_def)
       
    29 
       
    30 lemma equivp_transp:
       
    31   shows "equivp E \<Longrightarrow> (\<And>x y z. E x y \<Longrightarrow> E y z \<Longrightarrow> E x z)"
       
    32   by (metis equivp_reflp_symp_transp transp_def)
       
    33 
       
    34 lemma equivpI:
       
    35   assumes "reflp R" "symp R" "transp R"
       
    36   shows "equivp R"
       
    37   using assms by (simp add: equivp_reflp_symp_transp)
       
    38 
       
    39 lemma eq_imp_rel:  
       
    40   shows "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b" 
       
    41 by (simp add: equivp_reflp)
       
    42 
       
    43 definition
       
    44   "part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
       
    45 
       
    46 lemma equivp_IMP_part_equivp:
       
    47   assumes a: "equivp E"
       
    48   shows "part_equivp E"
       
    49   using a unfolding equivp_def part_equivp_def
       
    50   by auto
       
    51 
       
    52 
       
    53 abbreviation 
       
    54   rel_conj (infixr "OOO" 75)
       
    55 where
       
    56   "r1 OOO r2 \<equiv> r1 OO r2 OO r1"
       
    57 
       
    58 definition
       
    59   "Quotient E Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and>
       
    60                         (\<forall>a. E (Rep a) (Rep a)) \<and>
       
    61                         (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
       
    62 
       
    63 (* TEST
       
    64 lemma 
       
    65   fixes Abs1::"'b \<Rightarrow> 'c"
       
    66   and   Abs2::"'a \<Rightarrow> 'b"
       
    67   and   Rep1::"'c \<Rightarrow> 'b"
       
    68   and   Rep2::"'b \<Rightarrow> 'a"
       
    69   assumes "Quotient R1 Abs1 Rep1"
       
    70   and     "Quotient R2 Abs2 Rep2"
       
    71   shows "Quotient (f R2 R1) (Abs1 \<circ> Abs2) (Rep2 \<circ> Rep1)"
       
    72 *)
       
    73 
       
    74 lemma Quotient_abs_rep:
       
    75   assumes a: "Quotient E Abs Rep"
       
    76   shows "Abs (Rep a) \<equiv> a"
       
    77   using a unfolding Quotient_def
       
    78   by simp
       
    79 
       
    80 lemma Quotient_rep_reflp:
       
    81   assumes a: "Quotient E Abs Rep"
       
    82   shows "E (Rep a) (Rep a)"
       
    83   using a unfolding Quotient_def
       
    84   by blast
       
    85 
       
    86 lemma Quotient_rel:
       
    87   assumes a: "Quotient E Abs Rep"
       
    88   shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
       
    89   using a unfolding Quotient_def
       
    90   by blast
       
    91 
       
    92 lemma Quotient_rel_rep:
       
    93   assumes a: "Quotient R Abs Rep"
       
    94   shows "R (Rep a) (Rep b) \<equiv> (a = b)"
       
    95   apply (rule eq_reflection)
       
    96   using a unfolding Quotient_def
       
    97   by metis
       
    98 
       
    99 lemma Quotient_rep_abs:
       
   100   assumes a: "Quotient R Abs Rep"
       
   101   shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
       
   102   using a unfolding Quotient_def
       
   103   by blast
       
   104 
       
   105 lemma Quotient_rel_abs:
       
   106   assumes a: "Quotient E Abs Rep"
       
   107   shows "E r s \<Longrightarrow> Abs r = Abs s"
       
   108   using a unfolding Quotient_def
       
   109   by blast
       
   110 
       
   111 lemma identity_equivp:
       
   112   shows "equivp (op =)"
       
   113   unfolding equivp_def
       
   114   by auto
       
   115 
       
   116 lemma identity_quotient:
       
   117   shows "Quotient (op =) id id"
       
   118   unfolding Quotient_def id_def
       
   119   by blast
       
   120 
       
   121 lemma Quotient_symp:
       
   122   assumes a: "Quotient E Abs Rep"
       
   123   shows "symp E"
       
   124   using a unfolding Quotient_def symp_def
       
   125   by metis
       
   126 
       
   127 lemma Quotient_transp:
       
   128   assumes a: "Quotient E Abs Rep"
       
   129   shows "transp E"
       
   130   using a unfolding Quotient_def transp_def
       
   131   by metis
       
   132 
       
   133 definition
       
   134   fun_map (infixr "--->" 55)
       
   135 where
       
   136 [simp]: "fun_map f g h x = g (h (f x))"
       
   137 
       
   138 lemma fun_map_id:
       
   139   shows "(id ---> id) = id"
       
   140   by (simp add: expand_fun_eq id_def)
       
   141 
       
   142 definition
       
   143   fun_rel (infixr "===>" 55)
       
   144 where
       
   145 [simp]: "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"
       
   146 
       
   147 lemma fun_rel_eq:
       
   148   "(op =) ===> (op =) \<equiv> (op =)"
       
   149   by (rule eq_reflection) (simp add: expand_fun_eq)
       
   150 
       
   151 lemma fun_quotient:
       
   152   assumes q1: "Quotient R1 abs1 rep1"
       
   153   and     q2: "Quotient R2 abs2 rep2"
       
   154   shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
       
   155 proof -
       
   156   have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
       
   157     apply(simp add: expand_fun_eq)
       
   158     using q1 q2
       
   159     apply(simp add: Quotient_def)
       
   160     done
       
   161   moreover
       
   162   have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
       
   163     apply(auto)
       
   164     using q1 q2 unfolding Quotient_def
       
   165     apply(metis)
       
   166     done
       
   167   moreover
       
   168   have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> 
       
   169         (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
       
   170     apply(auto simp add: expand_fun_eq)
       
   171     using q1 q2 unfolding Quotient_def
       
   172     apply(metis)
       
   173     using q1 q2 unfolding Quotient_def
       
   174     apply(metis)
       
   175     using q1 q2 unfolding Quotient_def
       
   176     apply(metis)
       
   177     using q1 q2 unfolding Quotient_def
       
   178     apply(metis)
       
   179     done
       
   180   ultimately
       
   181   show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
       
   182     unfolding Quotient_def by blast
       
   183 qed
       
   184 
       
   185 definition
       
   186   Respects
       
   187 where
       
   188   "Respects R x \<equiv> (R x x)"
       
   189 
       
   190 lemma in_respects:
       
   191   shows "(x \<in> Respects R) = R x x"
       
   192   unfolding mem_def Respects_def by simp
       
   193 
       
   194 lemma equals_rsp:
       
   195   assumes q: "Quotient R Abs Rep"
       
   196   and     a: "R xa xb" "R ya yb"
       
   197   shows "R xa ya = R xb yb"
       
   198   using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def
       
   199   using a by blast
       
   200 
       
   201 lemma lambda_prs:
       
   202   assumes q1: "Quotient R1 Abs1 Rep1"
       
   203   and     q2: "Quotient R2 Abs2 Rep2"
       
   204   shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
       
   205   unfolding expand_fun_eq
       
   206   using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
       
   207   by simp
       
   208 
       
   209 lemma lambda_prs1:
       
   210   assumes q1: "Quotient R1 Abs1 Rep1"
       
   211   and     q2: "Quotient R2 Abs2 Rep2"
       
   212   shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
       
   213   unfolding expand_fun_eq
       
   214   using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
       
   215   by simp
       
   216 
       
   217 lemma rep_abs_rsp:
       
   218   assumes q: "Quotient R Abs Rep"
       
   219   and     a: "R x1 x2"
       
   220   shows "R x1 (Rep (Abs x2))"
       
   221   using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
       
   222 
       
   223 lemma rep_abs_rsp_left:
       
   224   assumes q: "Quotient R Abs Rep"
       
   225   and     a: "R x1 x2"
       
   226   shows "R (Rep (Abs x1)) x2"
       
   227 using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
       
   228 
       
   229 (* In the following theorem R1 can be instantiated with anything,
       
   230    but we know some of the types of the Rep and Abs functions;
       
   231    so by solving Quotient assumptions we can get a unique R1 that
       
   232    will be provable; which is why we need to use apply_rsp and
       
   233    not the primed version *)
       
   234 lemma apply_rsp:
       
   235   fixes f g::"'a \<Rightarrow> 'c"
       
   236   assumes q: "Quotient R1 Abs1 Rep1"
       
   237   and     a: "(R1 ===> R2) f g" "R1 x y"
       
   238   shows "R2 (f x) (g y)"
       
   239   using a by simp
       
   240 
       
   241 lemma apply_rsp':
       
   242   assumes a: "(R1 ===> R2) f g" "R1 x y"
       
   243   shows "R2 (f x) (g y)"
       
   244   using a by simp
       
   245 
       
   246 (* Set of lemmas for regularisation of ball and bex *)
       
   247 
       
   248 lemma ball_reg_eqv:
       
   249   fixes P :: "'a \<Rightarrow> bool"
       
   250   assumes a: "equivp R"
       
   251   shows "Ball (Respects R) P = (All P)"
       
   252   by (metis equivp_def in_respects a)
       
   253 
       
   254 lemma bex_reg_eqv:
       
   255   fixes P :: "'a \<Rightarrow> bool"
       
   256   assumes a: "equivp R"
       
   257   shows "Bex (Respects R) P = (Ex P)"
       
   258   by (metis equivp_def in_respects a)
       
   259 
       
   260 lemma ball_reg_right:
       
   261   assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
       
   262   shows "All P \<longrightarrow> Ball R Q"
       
   263   by (metis COMBC_def Collect_def Collect_mem_eq a)
       
   264 
       
   265 lemma bex_reg_left:
       
   266   assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
       
   267   shows "Bex R Q \<longrightarrow> Ex P"
       
   268   by (metis COMBC_def Collect_def Collect_mem_eq a)
       
   269 
       
   270 lemma ball_reg_left:
       
   271   assumes a: "equivp R"
       
   272   shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
       
   273   by (metis equivp_reflp in_respects a)
       
   274 
       
   275 lemma bex_reg_right:
       
   276   assumes a: "equivp R"
       
   277   shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
       
   278   by (metis equivp_reflp in_respects a)
       
   279 
       
   280 lemma ball_reg_eqv_range:
       
   281   fixes P::"'a \<Rightarrow> bool"
       
   282   and x::"'a"
       
   283   assumes a: "equivp R2"
       
   284   shows   "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
       
   285   apply(rule iffI)
       
   286   apply(rule allI)
       
   287   apply(drule_tac x="\<lambda>y. f x" in bspec)
       
   288   apply(simp add: in_respects)
       
   289   apply(rule impI)
       
   290   using a equivp_reflp_symp_transp[of "R2"]
       
   291   apply(simp add: reflp_def)
       
   292   apply(simp)
       
   293   apply(simp)
       
   294   done
       
   295 
       
   296 lemma bex_reg_eqv_range:
       
   297   assumes a: "equivp R2"
       
   298   shows   "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
       
   299   apply(auto)
       
   300   apply(rule_tac x="\<lambda>y. f x" in bexI)
       
   301   apply(simp)
       
   302   apply(simp add: Respects_def in_respects)
       
   303   apply(rule impI)
       
   304   using a equivp_reflp_symp_transp[of "R2"]
       
   305   apply(simp add: reflp_def)
       
   306   done
       
   307 
       
   308 lemma all_reg:
       
   309   assumes a: "!x :: 'a. (P x --> Q x)"
       
   310   and     b: "All P"
       
   311   shows "All Q"
       
   312   using a b by (metis)
       
   313 
       
   314 lemma ex_reg:
       
   315   assumes a: "!x :: 'a. (P x --> Q x)"
       
   316   and     b: "Ex P"
       
   317   shows "Ex Q"
       
   318   using a b by (metis)
       
   319 
       
   320 lemma ball_reg:
       
   321   assumes a: "!x :: 'a. (R x --> P x --> Q x)"
       
   322   and     b: "Ball R P"
       
   323   shows "Ball R Q"
       
   324   using a b by (metis COMBC_def Collect_def Collect_mem_eq)
       
   325 
       
   326 lemma bex_reg:
       
   327   assumes a: "!x :: 'a. (R x --> P x --> Q x)"
       
   328   and     b: "Bex R P"
       
   329   shows "Bex R Q"
       
   330   using a b by (metis COMBC_def Collect_def Collect_mem_eq)
       
   331 
       
   332 lemma ball_all_comm:
       
   333   "(\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)) \<Longrightarrow> ((\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y))"
       
   334   by auto
       
   335 
       
   336 lemma bex_ex_comm:
       
   337   "((\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)) \<Longrightarrow> ((\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y))"
       
   338   by auto
       
   339 
       
   340 (* Bounded abstraction *)
       
   341 definition
       
   342   Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
       
   343 where
       
   344   "(x \<in> p) \<Longrightarrow> (Babs p m x = m x)"
       
   345 
       
   346 definition
       
   347   Bexeq :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
       
   348 where
       
   349   "Bexeq R P \<equiv> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"
       
   350 
       
   351 (* 3 lemmas needed for proving repabs_inj *)
       
   352 lemma ball_rsp:
       
   353   assumes a: "(R ===> (op =)) f g"
       
   354   shows "Ball (Respects R) f = Ball (Respects R) g"
       
   355   using a by (simp add: Ball_def in_respects)
       
   356 
       
   357 lemma bex_rsp:
       
   358   assumes a: "(R ===> (op =)) f g"
       
   359   shows "(Bex (Respects R) f = Bex (Respects R) g)"
       
   360   using a by (simp add: Bex_def in_respects)
       
   361 
       
   362 lemma bex1_rsp:
       
   363   assumes a: "(R ===> (op =)) f g"
       
   364   shows "(Bex1 (Respects R) f = Bex1 (Respects R) g)"
       
   365   using a 
       
   366 by (simp add: Ex1_def Bex1_def in_respects) auto
       
   367 
       
   368 (* TODO/FIXME: simplify the repetitions in this proof *)
       
   369 lemma bexeq_rsp:
       
   370 assumes a: "Quotient R absf repf"
       
   371 shows "((R ===> op =) ===> op =) (Bexeq R) (Bexeq R)"
       
   372 apply simp
       
   373 unfolding Bexeq_def
       
   374 apply rule
       
   375 apply rule
       
   376 apply rule
       
   377 apply rule
       
   378 apply (erule conjE)+
       
   379 apply (erule bexE)
       
   380 apply rule
       
   381 apply (rule_tac x="xa" in bexI)
       
   382 apply metis
       
   383 apply metis
       
   384 apply rule+
       
   385 apply (erule_tac x="xb" in ballE)
       
   386 prefer 2
       
   387 apply (metis)
       
   388 apply (erule_tac x="ya" in ballE)
       
   389 prefer 2
       
   390 apply (metis)
       
   391 apply (metis in_respects)
       
   392 apply (erule conjE)+
       
   393 apply (erule bexE)
       
   394 apply rule
       
   395 apply (rule_tac x="xa" in bexI)
       
   396 apply metis
       
   397 apply metis
       
   398 apply rule+
       
   399 apply (erule_tac x="xb" in ballE)
       
   400 prefer 2
       
   401 apply (metis)
       
   402 apply (erule_tac x="ya" in ballE)
       
   403 prefer 2
       
   404 apply (metis)
       
   405 apply (metis in_respects)
       
   406 done
       
   407 
       
   408 lemma babs_rsp:
       
   409   assumes q: "Quotient R1 Abs1 Rep1"
       
   410   and     a: "(R1 ===> R2) f g"
       
   411   shows      "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
       
   412   apply (auto simp add: Babs_def)
       
   413   apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
       
   414   using a apply (simp add: Babs_def)
       
   415   apply (simp add: in_respects)
       
   416   using Quotient_rel[OF q]
       
   417   by metis
       
   418 
       
   419 lemma babs_prs:
       
   420   assumes q1: "Quotient R1 Abs1 Rep1"
       
   421   and     q2: "Quotient R2 Abs2 Rep2"
       
   422   shows "(Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f)) \<equiv> f"
       
   423   apply(rule eq_reflection)
       
   424   apply(rule ext)
       
   425   apply simp
       
   426   apply (subgoal_tac "Rep1 x \<in> Respects R1")
       
   427   apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
       
   428   apply (simp add: in_respects Quotient_rel_rep[OF q1])
       
   429   done
       
   430 
       
   431 lemma babs_simp:
       
   432   assumes q: "Quotient R1 Abs Rep"
       
   433   shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
       
   434   apply(rule iffI)
       
   435   apply(simp_all only: babs_rsp[OF q])
       
   436   apply(auto simp add: Babs_def)
       
   437   apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
       
   438   apply(metis Babs_def)
       
   439   apply (simp add: in_respects)
       
   440   using Quotient_rel[OF q]
       
   441   by metis
       
   442 
       
   443 (* If a user proves that a particular functional relation 
       
   444    is an equivalence this may be useful in regularising *)
       
   445 lemma babs_reg_eqv:
       
   446   shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
       
   447   by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp)
       
   448 
       
   449 (* 3 lemmas needed for cleaning of quantifiers *)
       
   450 lemma all_prs:
       
   451   assumes a: "Quotient R absf repf"
       
   452   shows "Ball (Respects R) ((absf ---> id) f) = All f"
       
   453   using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply
       
   454 by metis
       
   455 
       
   456 lemma ex_prs:
       
   457   assumes a: "Quotient R absf repf"
       
   458   shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
       
   459   using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply
       
   460   by metis
       
   461 
       
   462 lemma ex1_prs:
       
   463   assumes a: "Quotient R absf repf"
       
   464   shows "((absf ---> id) ---> id) (Bexeq R) f = Ex1 f"
       
   465 apply simp
       
   466 apply (subst Bexeq_def)
       
   467 apply (subst Bex_def)
       
   468 apply (subst Ex1_def)
       
   469 apply simp
       
   470 apply rule
       
   471  apply (erule conjE)+
       
   472  apply (erule_tac exE)
       
   473  apply (erule conjE)
       
   474  apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y")
       
   475   apply (rule_tac x="absf x" in exI)
       
   476   apply (thin_tac "\<forall>x\<in>Respects R. \<forall>y\<in>Respects R. f (absf x) \<and> f (absf y) \<longrightarrow> R x y")
       
   477   apply (simp)
       
   478   apply rule+
       
   479   using a unfolding Quotient_def
       
   480   apply metis
       
   481  apply rule+
       
   482  apply (erule_tac x="x" in ballE)
       
   483   apply (erule_tac x="y" in ballE)
       
   484    apply simp
       
   485   apply (simp add: in_respects)
       
   486  apply (simp add: in_respects)
       
   487 apply (erule_tac exE)
       
   488  apply rule
       
   489  apply (rule_tac x="repf x" in exI)
       
   490  apply (simp only: in_respects)
       
   491   apply rule
       
   492  apply (metis Quotient_rel_rep[OF a])
       
   493 using a unfolding Quotient_def apply (simp)
       
   494 apply rule+
       
   495 using a unfolding Quotient_def in_respects
       
   496 apply metis
       
   497 done
       
   498 
       
   499 lemma fun_rel_id:
       
   500   assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
       
   501   shows "(R1 ===> R2) f g"
       
   502   using a by simp
       
   503 
       
   504 lemma fun_rel_id_asm:
       
   505   assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))"
       
   506   shows "A \<longrightarrow> (R1 ===> R2) f g"
       
   507   using a by auto
       
   508 
       
   509 lemma quot_rel_rsp:
       
   510   assumes a: "Quotient R Abs Rep"
       
   511   shows "(R ===> R ===> op =) R R"
       
   512   apply(rule fun_rel_id)+
       
   513   apply(rule equals_rsp[OF a])
       
   514   apply(assumption)+
       
   515   done
       
   516 
       
   517 lemma o_prs:
       
   518   assumes q1: "Quotient R1 Abs1 Rep1"
       
   519   and     q2: "Quotient R2 Abs2 Rep2"
       
   520   and     q3: "Quotient R3 Abs3 Rep3"
       
   521   shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g"
       
   522   using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
       
   523   unfolding o_def expand_fun_eq by simp
       
   524 
       
   525 lemma o_rsp:
       
   526   assumes q1: "Quotient R1 Abs1 Rep1"
       
   527   and     q2: "Quotient R2 Abs2 Rep2"
       
   528   and     q3: "Quotient R3 Abs3 Rep3"
       
   529   and     a1: "(R2 ===> R3) f1 f2"
       
   530   and     a2: "(R1 ===> R2) g1 g2"
       
   531   shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
       
   532   using a1 a2 unfolding o_def expand_fun_eq
       
   533   by (auto)
       
   534 
       
   535 lemma cond_prs:
       
   536   assumes a: "Quotient R absf repf"
       
   537   shows "absf (if a then repf b else repf c) = (if a then b else c)"
       
   538   using a unfolding Quotient_def by auto
       
   539 
       
   540 lemma if_prs:
       
   541   assumes q: "Quotient R Abs Rep"
       
   542   shows "Abs (If a (Rep b) (Rep c)) = If a b c"
       
   543 using Quotient_abs_rep[OF q] by auto
       
   544 
       
   545 (* q not used *)
       
   546 lemma if_rsp:
       
   547   assumes q: "Quotient R Abs Rep"
       
   548   and     a: "a1 = a2" "R b1 b2" "R c1 c2"
       
   549   shows "R (If a1 b1 c1) (If a2 b2 c2)"
       
   550 using a by auto
       
   551 
       
   552 lemma let_prs:
       
   553   assumes q1: "Quotient R1 Abs1 Rep1"
       
   554   and     q2: "Quotient R2 Abs2 Rep2"
       
   555   shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f"
       
   556   using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto
       
   557 
       
   558 lemma let_rsp:
       
   559   assumes q1: "Quotient R1 Abs1 Rep1"
       
   560   and     a1: "(R1 ===> R2) f g"
       
   561   and     a2: "R1 x y"
       
   562   shows "R2 ((Let x f)::'c) ((Let y g)::'c)"
       
   563   using apply_rsp[OF q1 a1] a2 by auto
       
   564 
       
   565 
       
   566 
       
   567 
       
   568 (******************************************)
       
   569 (* REST OF THE FILE IS UNUSED (until now) *)
       
   570 (******************************************)
       
   571 
       
   572 lemma in_fun:
       
   573   shows "x \<in> ((f ---> g) s) = g (f x \<in> s)"
       
   574   by (simp add: mem_def)
       
   575 
       
   576 lemma respects_thm:
       
   577   shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))"
       
   578   unfolding Respects_def
       
   579   by (simp add: expand_fun_eq)
       
   580 
       
   581 lemma respects_rep_abs:
       
   582   assumes a: "Quotient R1 Abs1 Rep1"
       
   583   and     b: "Respects (R1 ===> R2) f"
       
   584   and     c: "R1 x x"
       
   585   shows "R2 (f (Rep1 (Abs1 x))) (f x)"
       
   586   using a b[simplified respects_thm] c unfolding Quotient_def
       
   587   by blast
       
   588 
       
   589 lemma respects_mp:
       
   590   assumes a: "Respects (R1 ===> R2) f"
       
   591   and     b: "R1 x y"
       
   592   shows "R2 (f x) (f y)"
       
   593   using a b unfolding Respects_def
       
   594   by simp
       
   595 
       
   596 lemma respects_o:
       
   597   assumes a: "Respects (R2 ===> R3) f"
       
   598   and     b: "Respects (R1 ===> R2) g"
       
   599   shows "Respects (R1 ===> R3) (f o g)"
       
   600   using a b unfolding Respects_def
       
   601   by simp
       
   602 
       
   603 lemma abs_o_rep:
       
   604   assumes a: "Quotient r absf repf"
       
   605   shows "absf o repf = id"
       
   606   apply(rule ext)
       
   607   apply(simp add: Quotient_abs_rep[OF a])
       
   608   done
       
   609 
       
   610 lemma eq_comp_r: "op = OO R OO op = \<equiv> R"
       
   611   apply (rule eq_reflection)
       
   612   apply (rule ext)+
       
   613   apply auto
       
   614   done
       
   615 
       
   616 lemma fun_rel_eq_rel:
       
   617   assumes q1: "Quotient R1 Abs1 Rep1"
       
   618   and     q2: "Quotient R2 Abs2 Rep2"
       
   619   shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g)
       
   620                              \<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))"
       
   621   using fun_quotient[OF q1 q2] unfolding Respects_def Quotient_def expand_fun_eq
       
   622   by blast
       
   623 
       
   624 lemma let_babs:
       
   625   "v \<in> r \<Longrightarrow> Let v (Babs r lam) = Let v lam"
       
   626   by (simp add: Babs_def)
       
   627 
       
   628 lemma fun_rel_equals:
       
   629   assumes q1: "Quotient R1 Abs1 Rep1"
       
   630   and     q2: "Quotient R2 Abs2 Rep2"
       
   631   and     r1: "Respects (R1 ===> R2) f"
       
   632   and     r2: "Respects (R1 ===> R2) g" 
       
   633   shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
       
   634   apply(rule_tac iffI)
       
   635   apply(rule)+
       
   636   apply (rule apply_rsp'[of "R1" "R2"])
       
   637   apply(subst Quotient_rel[OF fun_quotient[OF q1 q2]])
       
   638   apply auto
       
   639   using fun_quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def
       
   640   apply (metis let_rsp q1)
       
   641   apply (metis fun_rel_eq_rel let_rsp q1 q2 r2)
       
   642   using r1 unfolding Respects_def expand_fun_eq
       
   643   apply(simp (no_asm_use))
       
   644   apply(metis Quotient_rel[OF q2] Quotient_rel_rep[OF q1])
       
   645   done
       
   646 
       
   647 (* ask Peter: fun_rel_IMP used twice *) 
       
   648 lemma fun_rel_IMP2:
       
   649   assumes q1: "Quotient R1 Abs1 Rep1"
       
   650   and     q2: "Quotient R2 Abs2 Rep2"
       
   651   and     r1: "Respects (R1 ===> R2) f"
       
   652   and     r2: "Respects (R1 ===> R2) g" 
       
   653   and     a:  "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g"
       
   654   shows "R1 x y \<Longrightarrow> R2 (f x) (g y)"
       
   655   using q1 q2 r1 r2 a
       
   656   by (simp add: fun_rel_equals)
       
   657 
       
   658 lemma lambda_rep_abs_rsp:
       
   659   assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))"
       
   660   and     r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))"
       
   661   shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))"
       
   662   using r1 r2 by auto
       
   663 
       
   664 (* ask peter what are literal_case *)
       
   665 (* literal_case_PRS *)
       
   666 (* literal_case_RSP *)
       
   667 (* Cez: !f x. literal_case f x = f x *)
       
   668 
       
   669 (* We use id_simps which includes id_apply; so these 2 theorems can be removed *)
       
   670 lemma id_prs:
       
   671   assumes q: "Quotient R Abs Rep"
       
   672   shows "Abs (id (Rep e)) = id e"
       
   673   using Quotient_abs_rep[OF q] by auto
       
   674 
       
   675 lemma id_rsp:
       
   676   assumes q: "Quotient R Abs Rep"
       
   677   and     a: "R e1 e2"
       
   678   shows "R (id e1) (id e2)"
       
   679   using a by auto
       
   680 
       
   681 end
       
   682