1 \documentclass{svjour3} |
|
2 \usepackage{amsmath} |
|
3 \usepackage{amssymb} |
|
4 \usepackage{isabelle} |
|
5 \usepackage{isabellesym} |
|
6 \usepackage{tikz} |
|
7 \usepackage{verbdef} |
|
8 \usepackage{mathpartir} |
|
9 \usepackage{pdfsetup} |
|
10 \usepackage{times} |
|
11 \usepackage{stmaryrd} |
|
12 |
|
13 \urlstyle{rm} |
|
14 \isabellestyle{it} |
|
15 \renewcommand{\isastyleminor}{\it}% |
|
16 \renewcommand{\isastyle}{\normalsize\it}% |
|
17 \renewcommand{\isastylescript}{\it} |
|
18 \def\dn{\,\triangleq\,} |
|
19 \verbdef\singlearr|---->| |
|
20 \verbdef\doublearr|===>| |
|
21 \verbdef\tripple|###| |
|
22 |
|
23 \renewcommand{\isasymequiv}{$\triangleq$} |
|
24 \renewcommand{\isasymemptyset}{$\varnothing$} |
|
25 \renewcommand{\isasymUnion}{$\bigcup$} |
|
26 \renewcommand{\isacharunderscore}{\text{$\_\!\_$}} |
|
27 |
|
28 \newcommand{\isasymsinglearr}{$\mapsto$} |
|
29 \newcommand{\isasymdoublearr}{$\Mapsto$} |
|
30 \newcommand{\isasymtripple}{\tripple} |
|
31 |
|
32 \newcommand{\numbered}[1]{\refstepcounter{equation}{\rm(\arabic{equation})}\label{#1}} |
|
33 |
|
34 \begin{document} |
|
35 |
|
36 \title{Quotients Revisited for Isabelle/HOL} |
|
37 \author{Cezary Kaliszyk \and Christian Urban} |
|
38 \institute{C.~Kaliszyk \at University of Innsbruck, Austria |
|
39 \and C.~Urban \at King's College London, UK} |
|
40 \date{Received: date / Accepted: date} |
|
41 |
|
42 \maketitle |
|
43 |
|
44 \begin{abstract} |
|
45 Higher-Order Logic (HOL) is based on a small logic kernel, whose only |
|
46 mechanism for extension is the introduction of safe definitions and of |
|
47 non-empty types. Both extensions are often performed in quotient |
|
48 constructions. To ease the work involved with such quotient |
|
49 constructions, we re-implemented in the Isabelle/HOL theorem prover |
|
50 the quotient package by Homeier. In doing so we extended his work in |
|
51 order to deal with compositions of quotients and also specified |
|
52 completely the procedure of lifting theorems from the raw level to the |
|
53 quotient level. The importance for theorem proving is that many |
|
54 formal verifications, in order to be feasible, require a convenient |
|
55 reasoning infrastructure for quotient constructions. |
|
56 \end{abstract} |
|
57 |
|
58 %\keywords{Quotients, Isabelle theorem prover, Higher-Order Logic} |
|
59 |
|
60 \bibliographystyle{abbrv} |
|
61 \input{session} |
|
62 |
|
63 |
|
64 |
|
65 \end{document} |
|
66 |
|
67 %%% Local Variables: |
|
68 %%% mode: latex |
|
69 %%% TeX-master: t |
|
70 %%% End: |
|