Nominal/Ex/SFT/Utils.thy
branchNominal2-Isabelle2013
changeset 3208 da575186d492
parent 3206 fb201e383f1b
child 3209 2fb0bc0dcbf1
equal deleted inserted replaced
3206:fb201e383f1b 3208:da575186d492
     1 header {* Utilities for defining constants and functions *}
       
     2 
       
     3 theory Utils imports LambdaTerms begin
       
     4 
       
     5 lemma beta_app:
       
     6   "(\<integral> x. M) \<cdot> Var x \<approx> M"
       
     7   by (rule b3, rule bI)
       
     8      (simp add: b1)
       
     9 
       
    10 lemma lam1_fast_app:
       
    11   assumes leq: "\<And>a. (L = \<integral> a. (F (V a)))"
       
    12       and su: "\<And>x. atom x \<sharp> A \<Longrightarrow> F (V x) [x ::= A] = F A"
       
    13   shows "L \<cdot> A \<approx> F A"
       
    14 proof -
       
    15   obtain x :: name where a: "atom x \<sharp> A" using obtain_fresh by blast
       
    16   show ?thesis
       
    17     by (simp add: leq[of x], rule b3, rule bI, simp add: su b1 a)
       
    18 qed
       
    19 
       
    20 lemma lam2_fast_app:
       
    21   assumes leq: "\<And>a b. a \<noteq> b \<Longrightarrow> L = \<integral> a. \<integral> b. (F (V a) (V b))"
       
    22      and su: "\<And>x y. atom x \<sharp> A \<Longrightarrow> atom y \<sharp> A \<Longrightarrow> atom x \<sharp> B \<Longrightarrow> atom y \<sharp> B \<Longrightarrow>
       
    23        x \<noteq> y \<Longrightarrow> F (V x) (V y) [x ::= A] [y ::= B] = F A B"
       
    24   shows "L \<cdot> A \<cdot> B \<approx> F A B"
       
    25 proof -
       
    26   obtain x :: name where a: "atom x \<sharp> (A, B)" using obtain_fresh by blast
       
    27   obtain y :: name where b: "atom y \<sharp> (x, A, B)" using obtain_fresh by blast
       
    28   obtain z :: name where c: "atom z \<sharp> (x, y, A, B)" using obtain_fresh by blast
       
    29   have *: "x \<noteq> y" "x \<noteq> z" "y \<noteq> z"
       
    30     using a b c by (simp_all add: fresh_Pair fresh_at_base) blast+
       
    31   have ** : "atom y \<sharp> z" "atom x \<sharp> z" "atom y \<sharp> x"
       
    32             "atom z \<sharp> y" "atom z \<sharp> x" "atom x \<sharp> y"
       
    33             "atom x \<sharp> A" "atom y \<sharp> A" "atom z \<sharp> A"
       
    34             "atom x \<sharp> B" "atom y \<sharp> B" "atom z \<sharp> B"
       
    35     using a b c by (simp_all add: fresh_Pair fresh_at_base) blast+
       
    36   show ?thesis
       
    37     apply (simp add: leq[OF *(1)])
       
    38     apply (rule b3) apply (rule b5) apply (rule bI)
       
    39     apply (simp add: ** fresh_Pair)
       
    40     apply (rule b3) apply (rule bI) apply (simp add: su b1 ** *)
       
    41     done
       
    42   qed
       
    43 
       
    44 lemma lam3_fast_app:
       
    45   assumes leq: "\<And>a b c. a \<noteq> b \<Longrightarrow> b \<noteq> c \<Longrightarrow> c \<noteq> a \<Longrightarrow>
       
    46        L = \<integral> a. \<integral> b. \<integral> c. (F (V a) (V b) (V c))"
       
    47      and su: "\<And>x y z. atom x \<sharp> A \<Longrightarrow> atom y \<sharp> A \<Longrightarrow> atom z \<sharp> A \<Longrightarrow>
       
    48                      atom x \<sharp> B \<Longrightarrow> atom y \<sharp> B \<Longrightarrow> atom z \<sharp> B \<Longrightarrow>
       
    49                      atom y \<sharp> B \<Longrightarrow> atom y \<sharp> B \<Longrightarrow> atom z \<sharp> B \<Longrightarrow>
       
    50                      x \<noteq> y \<Longrightarrow> y \<noteq> z \<Longrightarrow> z \<noteq> x \<Longrightarrow>
       
    51       ((F (V x) (V y) (V z))[x ::= A] [y ::= B] [z ::= C] = F A B C)"
       
    52   shows "L \<cdot> A \<cdot> B \<cdot> C \<approx> F A B C"
       
    53 proof -
       
    54   obtain x :: name where a: "atom x \<sharp> (A, B, C)" using obtain_fresh by blast
       
    55   obtain y :: name where b: "atom y \<sharp> (x, A, B, C)" using obtain_fresh by blast
       
    56   obtain z :: name where c: "atom z \<sharp> (x, y, A, B, C)" using obtain_fresh by blast
       
    57   have *: "x \<noteq> y" "y \<noteq> z" "z \<noteq> x"
       
    58     using a b c by (simp_all add: fresh_Pair fresh_at_base) blast+
       
    59   have ** : "atom y \<sharp> z" "atom x \<sharp> z" "atom y \<sharp> x"
       
    60             "atom z \<sharp> y" "atom z \<sharp> x" "atom x \<sharp> y"
       
    61             "atom x \<sharp> A" "atom y \<sharp> A" "atom z \<sharp> A"
       
    62             "atom x \<sharp> B" "atom y \<sharp> B" "atom z \<sharp> B"
       
    63             "atom x \<sharp> C" "atom y \<sharp> C" "atom z \<sharp> C"
       
    64     using a b c by (simp_all add: fresh_Pair fresh_at_base) blast+
       
    65   show ?thesis
       
    66     apply (simp add: leq[OF *(1) *(2) *(3)])
       
    67     apply (rule b3) apply (rule b5) apply (rule b5) apply (rule bI)
       
    68     apply (simp add: ** fresh_Pair)
       
    69     apply (rule b3) apply (rule b5) apply (rule bI)
       
    70     apply (simp add: ** fresh_Pair)
       
    71     apply (rule b3) apply (rule bI) apply (simp add: su b1 ** *)
       
    72     done
       
    73   qed
       
    74 
       
    75 definition cn :: "nat \<Rightarrow> name" where "cn n \<equiv> Abs_name (Atom (Sort ''LambdaTerms.name'' []) n)"
       
    76 
       
    77 lemma cnd[simp]: "m \<noteq> n \<Longrightarrow> cn m \<noteq> cn n"
       
    78   unfolding cn_def using Abs_name_inject by simp
       
    79 
       
    80 definition cx :: name where "cx \<equiv> cn 0"
       
    81 definition cy :: name where "cy \<equiv> cn 1"
       
    82 definition cz :: name where "cz \<equiv> cn 2"
       
    83 
       
    84 lemma cx_cy_cz[simp]:
       
    85   "cx \<noteq> cy" "cx \<noteq> cz" "cz \<noteq> cy"
       
    86   unfolding cx_def cy_def cz_def
       
    87   by simp_all
       
    88 
       
    89 lemma noteq_fresh: "atom x \<sharp> y = (x \<noteq> y)"
       
    90   by (simp add: fresh_at_base(2))
       
    91 
       
    92 lemma fresh_fun_eqvt_app2:
       
    93   assumes a: "eqvt f"
       
    94   and b: "a \<sharp> x" "a \<sharp> y"
       
    95   shows "a \<sharp> f x y"
       
    96   using fresh_fun_eqvt_app[OF a b(1)] a b
       
    97   by (metis fresh_fun_app)
       
    98 
       
    99 end
       
   100 
       
   101 
       
   102