1 theory QuotientSet |
|
2 imports |
|
3 "../Nominal2" |
|
4 begin |
|
5 |
|
6 lemma supp_quot: |
|
7 "(supp (R, x)) supports (R `` {x})" |
|
8 unfolding supports_def |
|
9 unfolding fresh_def[symmetric] |
|
10 apply(perm_simp) |
|
11 apply(simp add: swap_fresh_fresh) |
|
12 done |
|
13 |
|
14 lemma |
|
15 assumes "equiv UNIV R" |
|
16 and "(x, y) \<in> R" |
|
17 shows "R `` {x} = R `` {y}" |
|
18 using assms |
|
19 by (rule equiv_class_eq) |
|
20 |
|
21 lemma s1: |
|
22 assumes "equiv UNIV R" |
|
23 and "(x, y) \<in> R" |
|
24 shows "a \<sharp> (R `` {x}) \<longleftrightarrow> a \<sharp> (R `` {y})" |
|
25 using assms |
|
26 apply(subst equiv_class_eq) |
|
27 apply(auto) |
|
28 done |
|
29 |
|
30 lemma s2: |
|
31 fixes x::"'a::fs" |
|
32 assumes "equiv UNIV R" |
|
33 and "supp R = {}" |
|
34 shows "\<Inter>{supp y | y. (x, y) \<in> R} supports (R `` {x})" |
|
35 unfolding supports_def |
|
36 apply(rule allI)+ |
|
37 apply(rule impI) |
|
38 apply(rule swap_fresh_fresh) |
|
39 apply(drule conjunct1) |
|
40 apply(auto)[1] |
|
41 apply(subst s1) |
|
42 apply(rule assms) |
|
43 apply(assumption) |
|
44 apply(rule supports_fresh) |
|
45 apply(rule supp_quot) |
|
46 apply(simp add: supp_Pair finite_supp assms) |
|
47 apply(simp add: supp_Pair assms) |
|
48 apply(drule conjunct2) |
|
49 apply(auto)[1] |
|
50 apply(subst s1) |
|
51 apply(rule assms) |
|
52 apply(assumption) |
|
53 apply(rule supports_fresh) |
|
54 apply(rule supp_quot) |
|
55 apply(simp add: supp_Pair finite_supp assms) |
|
56 apply(simp add: supp_Pair assms) |
|
57 done |
|
58 |
|
59 lemma s3: |
|
60 fixes S::"'a::fs set" |
|
61 assumes "finite S" |
|
62 and "S \<noteq> {}" |
|
63 and "a \<sharp> S" |
|
64 shows "\<exists>x \<in> S. a \<sharp> x" |
|
65 using assms |
|
66 apply(auto simp add: fresh_def) |
|
67 apply(subst (asm) supp_of_finite_sets) |
|
68 apply(auto) |
|
69 done |
|
70 |
|
71 (* |
|
72 lemma supp_inter: |
|
73 fixes x::"'a::fs" |
|
74 assumes "equiv UNIV R" |
|
75 and "supp R = {}" |
|
76 shows "supp (R `` {x}) = \<Inter>{supp y | y. (x, y) \<in> R}" |
|
77 apply(rule finite_supp_unique) |
|
78 apply(rule s2) |
|
79 apply(rule assms) |
|
80 apply(rule assms) |
|
81 apply(metis (lam_lifting, no_types) at_base_infinite finite_UNIV) |
|
82 *) |
|
83 |
|
84 |
|
85 |
|
86 |
|
87 |
|
88 end |
|
89 |
|
90 |
|
91 |
|