Nominal/Ex/CR.thy
branchNominal2-Isabelle2013
changeset 3208 da575186d492
parent 3206 fb201e383f1b
child 3209 2fb0bc0dcbf1
equal deleted inserted replaced
3206:fb201e383f1b 3208:da575186d492
     1 (* CR_Takahashi from Nominal1 ported to Nominal2 *)
       
     2 theory CR 
       
     3 imports "../Nominal2" 
       
     4 begin
       
     5 
       
     6 atom_decl name
       
     7 
       
     8 nominal_datatype lam =
       
     9   Var "name"
       
    10 | App "lam" "lam"
       
    11 | Lam x::"name" l::"lam"  binds x in l ("Lam [_]. _" [100, 100] 100)
       
    12 
       
    13 nominal_primrec
       
    14   subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam"  ("_ [_ ::= _]" [90, 90, 90] 90)
       
    15 where
       
    16   "(Var x)[y ::= s] = (if x = y then s else (Var x))"
       
    17 | "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])"
       
    18 | "atom x \<sharp> (y, s) \<Longrightarrow> (Lam [x]. t)[y ::= s] = Lam [x].(t[y ::= s])"
       
    19   unfolding eqvt_def subst_graph_def
       
    20   apply (rule, perm_simp, rule)
       
    21   apply(rule TrueI)
       
    22   apply(auto)
       
    23   apply(rule_tac y="a" and c="(aa, b)" in lam.strong_exhaust)
       
    24   apply(blast)+
       
    25   apply(simp_all add: fresh_star_def fresh_Pair_elim)
       
    26   apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
       
    27   apply(simp_all add: Abs_fresh_iff)
       
    28   apply(simp add: fresh_star_def fresh_Pair)
       
    29   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
       
    30   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
       
    31   done
       
    32 
       
    33 termination (eqvt)
       
    34   by lexicographic_order
       
    35 
       
    36 lemma forget:
       
    37   shows "atom x \<sharp> t \<Longrightarrow> t[x ::= s] = t"
       
    38   by (nominal_induct t avoiding: x s rule: lam.strong_induct)
       
    39      (auto simp add: lam.fresh fresh_at_base)
       
    40 
       
    41 lemma fresh_fact:
       
    42   fixes z::"name"
       
    43   assumes a: "atom z \<sharp> s"
       
    44       and b: "z = y \<or> atom z \<sharp> t"
       
    45   shows "atom z \<sharp> t[y ::= s]"
       
    46   using a b
       
    47   by (nominal_induct t avoiding: z y s rule: lam.strong_induct)
       
    48      (auto simp add: lam.fresh fresh_at_base)
       
    49 
       
    50 lemma substitution_lemma:
       
    51   assumes a: "x \<noteq> y" "atom x \<sharp> u"
       
    52   shows "t[x ::= s][y ::= u] = t[y ::= u][x ::= s[y ::= u]]"
       
    53   using a
       
    54   by (nominal_induct t avoiding: x y s u rule: lam.strong_induct)
       
    55      (auto simp add: fresh_fact forget)
       
    56 
       
    57 lemma subst_rename:
       
    58   assumes a: "atom y \<sharp> t"
       
    59   shows "t[x ::= s] = ((y \<leftrightarrow> x) \<bullet>t)[y ::= s]"
       
    60   using a
       
    61   by (nominal_induct t avoiding: x y s rule: lam.strong_induct)
       
    62      (auto simp add: lam.fresh fresh_at_base)
       
    63 
       
    64 lemma supp_subst:
       
    65   shows "supp (t[x ::= s]) \<subseteq> (supp t - {atom x}) \<union> supp s"
       
    66   by (induct t x s rule: subst.induct) (auto simp add: lam.supp supp_at_base)
       
    67 
       
    68 inductive
       
    69   beta :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>b _" [80,80] 80)
       
    70 where
       
    71   b1[intro]: "t1 \<longrightarrow>b t2 \<Longrightarrow> App t1 s \<longrightarrow>b App t2 s"
       
    72 | b2[intro]: "s1 \<longrightarrow>b s2 \<Longrightarrow> App t s1 \<longrightarrow>b App t s2"
       
    73 | b3[intro]: "t1 \<longrightarrow>b t2 \<Longrightarrow> Lam [x]. t1 \<longrightarrow>b Lam [x]. t2"
       
    74 | b4[intro]: "atom x \<sharp> s \<Longrightarrow> App (Lam [x]. t) s \<longrightarrow>b t[x ::= s]"
       
    75 
       
    76 equivariance beta
       
    77 
       
    78 nominal_inductive beta
       
    79   avoids b3: x
       
    80        | b4: x
       
    81   by (simp_all add: fresh_star_def fresh_Pair lam.fresh fresh_fact)
       
    82 
       
    83 section {* Transitive Closure of Beta *}
       
    84 
       
    85 inductive
       
    86   beta_star :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>b* _" [80,80] 80)
       
    87 where
       
    88   bs1[intro, simp]: "M \<longrightarrow>b* M"
       
    89 | bs2[intro]: "\<lbrakk>M1\<longrightarrow>b* M2; M2 \<longrightarrow>b M3\<rbrakk> \<Longrightarrow> M1 \<longrightarrow>b* M3"
       
    90 
       
    91 equivariance beta_star
       
    92 
       
    93 lemma bs3[intro, trans]:
       
    94   assumes "A \<longrightarrow>b* B"
       
    95   and     "B \<longrightarrow>b* C"
       
    96   shows   "A \<longrightarrow>b* C"
       
    97   using assms(2) assms(1)
       
    98   by induct auto
       
    99 
       
   100 section {* One-Reduction *}
       
   101 
       
   102 inductive
       
   103   One :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>1 _" [80,80] 80)
       
   104 where
       
   105   o1[intro]: "Var x \<longrightarrow>1 Var x"
       
   106 | o2[intro]: "\<lbrakk>t1 \<longrightarrow>1 t2; s1 \<longrightarrow>1 s2\<rbrakk> \<Longrightarrow> App t1 s1 \<longrightarrow>1 App t2 s2"
       
   107 | o3[intro]: "t1 \<longrightarrow>1 t2 \<Longrightarrow> Lam [x].t1 \<longrightarrow>1 Lam [x].t2"
       
   108 | o4[intro]: "\<lbrakk>atom x \<sharp> (s1, s2); t1 \<longrightarrow>1 t2; s1 \<longrightarrow>1 s2\<rbrakk> \<Longrightarrow> App (Lam [x].t1) s1 \<longrightarrow>1 t2[x ::= s2]"
       
   109 
       
   110 equivariance One
       
   111 
       
   112 nominal_inductive One
       
   113   avoids o3: "x"
       
   114       |  o4: "x"
       
   115   by (simp_all add: fresh_star_def fresh_Pair lam.fresh fresh_fact)
       
   116 
       
   117 lemma One_refl:
       
   118   shows "t \<longrightarrow>1 t"
       
   119   by (nominal_induct t rule: lam.strong_induct) (auto)
       
   120 
       
   121 lemma One_subst:
       
   122   assumes a: "t1 \<longrightarrow>1 t2" "s1 \<longrightarrow>1 s2"
       
   123   shows "t1[x ::= s1] \<longrightarrow>1 t2[x ::= s2]"
       
   124   using a
       
   125   by (nominal_induct t1 t2 avoiding: s1 s2 x rule: One.strong_induct)
       
   126      (auto simp add: substitution_lemma fresh_at_base fresh_fact fresh_Pair)
       
   127 
       
   128 lemma better_o4_intro:
       
   129   assumes a: "t1 \<longrightarrow>1 t2" "s1 \<longrightarrow>1 s2"
       
   130   shows "App (Lam [x]. t1) s1 \<longrightarrow>1 t2[ x ::= s2]"
       
   131 proof -
       
   132   obtain y::"name" where fs: "atom y \<sharp> (x, t1, s1, t2, s2)" by (rule obtain_fresh)
       
   133   have "App (Lam [x]. t1) s1 = App (Lam [y]. ((y \<leftrightarrow> x) \<bullet> t1)) s1" using fs
       
   134     by (auto simp add: lam.eq_iff Abs1_eq_iff' flip_def fresh_Pair fresh_at_base)
       
   135   also have "\<dots> \<longrightarrow>1 ((y \<leftrightarrow> x) \<bullet> t2)[y ::= s2]" using fs a by (auto simp add: One.eqvt)
       
   136   also have "\<dots> = t2[x ::= s2]" using fs by (simp add: subst_rename[symmetric])
       
   137   finally show "App (Lam [x].t1) s1 \<longrightarrow>1 t2[x ::= s2]" by simp
       
   138 qed
       
   139 
       
   140 lemma One_Var:
       
   141   assumes a: "Var x \<longrightarrow>1 M"
       
   142   shows "M = Var x"
       
   143   using a by (cases rule: One.cases) (simp_all)
       
   144 
       
   145 lemma One_Lam:
       
   146   assumes a: "Lam [x].t \<longrightarrow>1 s" "atom x \<sharp> s"
       
   147   shows "\<exists>t'. s = Lam [x].t' \<and> t \<longrightarrow>1 t'"
       
   148   using a
       
   149   apply (cases rule: One.cases)
       
   150   apply (auto simp add: Abs1_eq_iff)
       
   151   apply (rule_tac x="(atom xa \<rightleftharpoons> atom x) \<bullet> t2" in exI)
       
   152   apply (auto simp add: fresh_permute_left lam.fresh)
       
   153   by (metis swap_commute One.eqvt)
       
   154 
       
   155 lemma One_App:
       
   156   assumes a: "App t s \<longrightarrow>1 r"
       
   157   shows "(\<exists>t' s'. r = App t' s' \<and> t \<longrightarrow>1 t' \<and> s \<longrightarrow>1 s') \<or>
       
   158          (\<exists>x p p' s'. r = p'[x ::= s'] \<and> t = Lam [x].p \<and> p \<longrightarrow>1 p' \<and> s \<longrightarrow>1 s' \<and> atom x \<sharp> (s,s'))"
       
   159   using a by (cases rule: One.cases) auto
       
   160 
       
   161 lemma One_preserves_fresh:
       
   162   fixes x::"name"
       
   163   assumes a: "M \<longrightarrow>1 N"
       
   164   shows "atom x \<sharp> M \<Longrightarrow> atom x \<sharp> N"
       
   165   using a
       
   166   by (induct, auto simp add: lam.fresh)
       
   167      (metis fresh_fact)+
       
   168 
       
   169 (* TODO *)
       
   170 lemma One_strong_cases[consumes 1]:
       
   171   "\<lbrakk> a1 \<longrightarrow>1 a2; \<And>x. \<lbrakk>a1 = Var x; a2 = Var x\<rbrakk> \<Longrightarrow> P;
       
   172  \<And>t1 t2 s1 s2. \<lbrakk>a1 = App t1 s1; a2 = App t2 s2;  t1 \<longrightarrow>1 t2;  s1 \<longrightarrow>1 s2\<rbrakk> \<Longrightarrow> P;
       
   173  \<And>t1 t2. (\<lbrakk>atom xa \<sharp> a1; atom xa \<sharp> a2\<rbrakk> \<Longrightarrow> a1 = Lam [xa].t1 \<and> a2 = Lam [xa].t2 \<and>  t1 \<longrightarrow>1 t2) \<Longrightarrow> P;
       
   174  \<And>s1 s2 t1 t2.
       
   175     (\<lbrakk>atom xaa \<sharp> a1; atom xaa \<sharp> a2\<rbrakk>
       
   176      \<Longrightarrow> a1 = App (Lam [xaa].t1) s1 \<and> a2 = t2[xaa::=s2] \<and> atom xaa \<sharp> (s1, s2) \<and>  t1 \<longrightarrow>1 t2 \<and>  s1 \<longrightarrow>1 s2) \<Longrightarrow>
       
   177     P\<rbrakk>
       
   178   \<Longrightarrow> P"
       
   179   apply (nominal_induct avoiding: a1 a2 rule: One.strong_induct)
       
   180   apply blast
       
   181   apply blast
       
   182   apply (simp add: fresh_Pair_elim Abs1_eq_iff lam.fresh)
       
   183   apply (case_tac "xa = x")
       
   184   apply (simp_all)[2]
       
   185   apply blast
       
   186   apply (rotate_tac 6)
       
   187   apply (drule_tac x="(atom x \<rightleftharpoons> atom xa) \<bullet> t1" in meta_spec)
       
   188   apply (rotate_tac -1)
       
   189   apply (drule_tac x="(atom x \<rightleftharpoons> atom xa) \<bullet> t2" in meta_spec)
       
   190   apply (simp add: One.eqvt fresh_permute_left)
       
   191   apply (simp add: fresh_Pair_elim Abs1_eq_iff lam.fresh)
       
   192   apply (case_tac "xaa = x")
       
   193   apply (simp_all add: fresh_Pair)[2]
       
   194   apply blast
       
   195   apply (rotate_tac -2)
       
   196   apply (drule_tac x="s1" in meta_spec)
       
   197   apply (rotate_tac -1)
       
   198   apply (drule_tac x="s2" in meta_spec)
       
   199   apply (rotate_tac -1)
       
   200   apply (drule_tac x="(atom x \<rightleftharpoons> atom xaa) \<bullet> t1" in meta_spec)
       
   201   apply (rotate_tac -1)
       
   202   apply (drule_tac x="(atom x \<rightleftharpoons> atom xaa) \<bullet> t2" in meta_spec)
       
   203   apply (rotate_tac -1)
       
   204   apply (simp add: One_preserves_fresh fresh_permute_left One.eqvt)
       
   205   by (metis Nominal2_Base.swap_commute One_preserves_fresh flip_def subst_rename)
       
   206 
       
   207 lemma One_Redex:
       
   208   assumes a: "App (Lam [x].t) s \<longrightarrow>1 r" "atom x \<sharp> (s,r)"
       
   209   shows "(\<exists>t' s'. r = App (Lam [x].t') s' \<and> t \<longrightarrow>1 t' \<and> s \<longrightarrow>1 s') \<or>
       
   210          (\<exists>t' s'. r = t'[x ::= s'] \<and> t \<longrightarrow>1 t' \<and> s \<longrightarrow>1 s')"
       
   211   using a
       
   212   by (cases rule: One_strong_cases)
       
   213      (auto dest!: One_Lam simp add: fresh_Pair lam.fresh Abs1_eq_iff)
       
   214 
       
   215 inductive
       
   216   One_star :: "lam\<Rightarrow>lam\<Rightarrow>bool" (" _ \<longrightarrow>1* _" [80,80] 80)
       
   217 where
       
   218   os1[intro, simp]: "t \<longrightarrow>1* t"
       
   219 | os2[intro]: "t \<longrightarrow>1* r \<Longrightarrow> r \<longrightarrow>1 s \<Longrightarrow> t \<longrightarrow>1* s"
       
   220 
       
   221 lemma os3[intro, trans]:
       
   222   assumes a1: "M1 \<longrightarrow>1* M2"
       
   223   and     a2: "M2 \<longrightarrow>1* M3"
       
   224   shows "M1 \<longrightarrow>1* M3"
       
   225   using a2 a1
       
   226   by induct auto
       
   227 
       
   228 section {* Complete Development Reduction *}
       
   229 
       
   230 inductive
       
   231   Dev :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>d _" [80,80] 80)
       
   232 where
       
   233   d1[intro]: "Var x \<longrightarrow>d Var x"
       
   234 | d2[intro]: "t \<longrightarrow>d s \<Longrightarrow> Lam [x].t \<longrightarrow>d Lam[x].s"
       
   235 | d3[intro]: "\<lbrakk>\<not>(\<exists>y t'. t1 = Lam [y].t'); t1 \<longrightarrow>d t2; s1 \<longrightarrow>d s2\<rbrakk> \<Longrightarrow> App t1 s1 \<longrightarrow>d App t2 s2"
       
   236 | d4[intro]: "\<lbrakk>atom x \<sharp> (s1,s2); t1 \<longrightarrow>d t2; s1 \<longrightarrow>d s2\<rbrakk> \<Longrightarrow> App (Lam [x].t1) s1 \<longrightarrow>d t2[x::=s2]"
       
   237 
       
   238 equivariance Dev
       
   239 nominal_inductive Dev
       
   240   avoids d2: "x"
       
   241       |  d4: "x"
       
   242   by (simp_all add: fresh_star_def fresh_Pair lam.fresh fresh_fact)
       
   243 
       
   244 lemma better_d4_intro:
       
   245   assumes a: "t1 \<longrightarrow>d t2" "s1 \<longrightarrow>d s2"
       
   246   shows "App (Lam [x].t1) s1 \<longrightarrow>d t2[x::=s2]"
       
   247 proof -
       
   248   obtain y::"name" where fs: "atom y\<sharp>(x,t1,s1,t2,s2)" by (rule obtain_fresh)
       
   249   have "App (Lam [x].t1) s1 = App (Lam [y].((y \<leftrightarrow> x)\<bullet>t1)) s1" using fs
       
   250     by (auto simp add: Abs1_eq_iff' flip_def fresh_Pair fresh_at_base)
       
   251   also have "\<dots> \<longrightarrow>d  ((y \<leftrightarrow> x) \<bullet> t2)[y ::= s2]" using fs a by (auto simp add: Dev.eqvt)
       
   252   also have "\<dots> = t2[x::=s2]" using fs by (simp add: subst_rename[symmetric])
       
   253   finally show "App (Lam [x].t1) s1 \<longrightarrow>d t2[x::=s2]" by simp
       
   254 qed
       
   255 
       
   256 lemma Dev_preserves_fresh:
       
   257   fixes x::"name"
       
   258   assumes a: "M\<longrightarrow>d N"
       
   259   shows "atom x\<sharp>M \<Longrightarrow> atom x\<sharp>N"
       
   260   using a
       
   261   by (induct, auto simp add: lam.fresh)
       
   262      (metis fresh_fact)+
       
   263 
       
   264 lemma Dev_Lam:
       
   265   assumes a: "Lam [x].M \<longrightarrow>d N"
       
   266   shows "\<exists>N'. N = Lam [x].N' \<and> M \<longrightarrow>d N'"
       
   267 proof -
       
   268   from a have "atom x \<sharp> Lam [x].M" by (simp add: lam.fresh)
       
   269   with a have "atom x \<sharp> N" by (simp add: Dev_preserves_fresh)
       
   270   with a show "\<exists>N'. N = Lam [x].N' \<and> M \<longrightarrow>d N'"
       
   271     apply (cases rule: Dev.cases)
       
   272     apply (auto simp add: Abs1_eq_iff lam.fresh)
       
   273     apply (rule_tac x="(atom xa \<rightleftharpoons> atom x) \<bullet> s" in exI)
       
   274     apply (auto simp add: fresh_permute_left lam.fresh)
       
   275     by (metis swap_commute Dev.eqvt)
       
   276 qed
       
   277 
       
   278 lemma Development_existence:
       
   279   shows "\<exists>M'. M \<longrightarrow>d M'"
       
   280 by (nominal_induct M rule: lam.strong_induct)
       
   281    (auto dest!: Dev_Lam intro: better_d4_intro)
       
   282 
       
   283 lemma Triangle:
       
   284   assumes a: "t \<longrightarrow>d t1" "t \<longrightarrow>1 t2"
       
   285   shows "t2 \<longrightarrow>1 t1"
       
   286 using a
       
   287 proof(nominal_induct avoiding: t2 rule: Dev.strong_induct)
       
   288   case (d4 x s1 s2 t1 t1' t2)
       
   289   have  fc: "atom x\<sharp>t2" "atom x\<sharp>s1" by fact+
       
   290   have "App (Lam [x].t1) s1 \<longrightarrow>1 t2" by fact
       
   291   then obtain t' s' where reds:
       
   292              "(t2 = App (Lam [x].t') s' \<and> t1 \<longrightarrow>1 t' \<and> s1 \<longrightarrow>1 s') \<or>
       
   293               (t2 = t'[x::=s'] \<and> t1 \<longrightarrow>1 t' \<and> s1 \<longrightarrow>1 s')"
       
   294   using fc by (auto dest!: One_Redex)
       
   295   have ih1: "t1 \<longrightarrow>1 t' \<Longrightarrow>  t' \<longrightarrow>1 t1'" by fact
       
   296   have ih2: "s1 \<longrightarrow>1 s' \<Longrightarrow>  s' \<longrightarrow>1 s2" by fact
       
   297   { assume "t1 \<longrightarrow>1 t'" "s1 \<longrightarrow>1 s'"
       
   298     then have "App (Lam [x].t') s' \<longrightarrow>1 t1'[x::=s2]"
       
   299       using ih1 ih2 by (auto intro: better_o4_intro)
       
   300   }
       
   301   moreover
       
   302   { assume "t1 \<longrightarrow>1 t'" "s1 \<longrightarrow>1 s'"
       
   303     then have "t'[x::=s'] \<longrightarrow>1 t1'[x::=s2]"
       
   304       using ih1 ih2 by (auto intro: One_subst)
       
   305   }
       
   306   ultimately show "t2 \<longrightarrow>1 t1'[x::=s2]" using reds by auto
       
   307 qed (auto dest!: One_Lam One_Var One_App)
       
   308 
       
   309 lemma Diamond_for_One:
       
   310   assumes a: "t \<longrightarrow>1 t1" "t \<longrightarrow>1 t2"
       
   311   shows "\<exists>t3. t2 \<longrightarrow>1 t3 \<and> t1 \<longrightarrow>1 t3"
       
   312 proof -
       
   313   obtain tc where "t \<longrightarrow>d tc" using Development_existence by blast
       
   314   with a have "t2 \<longrightarrow>1 tc" and "t1 \<longrightarrow>1 tc" by (simp_all add: Triangle)
       
   315   then show "\<exists>t3. t2 \<longrightarrow>1 t3 \<and> t1 \<longrightarrow>1 t3" by blast
       
   316 qed
       
   317 
       
   318 lemma Rectangle_for_One:
       
   319   assumes a:  "t \<longrightarrow>1* t1" "t \<longrightarrow>1 t2"
       
   320   shows "\<exists>t3. t1 \<longrightarrow>1 t3 \<and> t2 \<longrightarrow>1* t3"
       
   321 using a Diamond_for_One by (induct arbitrary: t2) (blast)+
       
   322 
       
   323 lemma CR_for_One_star:
       
   324   assumes a: "t \<longrightarrow>1* t1" "t \<longrightarrow>1* t2"
       
   325     shows "\<exists>t3. t2 \<longrightarrow>1* t3 \<and> t1 \<longrightarrow>1* t3"
       
   326 using a Rectangle_for_One by (induct arbitrary: t2) (blast)+
       
   327 
       
   328 section {* Establishing the Equivalence of Beta-star and One-star *}
       
   329 
       
   330 lemma Beta_Lam_cong:
       
   331   assumes a: "t1 \<longrightarrow>b* t2"
       
   332   shows "Lam [x].t1 \<longrightarrow>b* Lam [x].t2"
       
   333 using a by (induct) (blast)+
       
   334 
       
   335 lemma Beta_App_cong_aux:
       
   336   assumes a: "t1 \<longrightarrow>b* t2"
       
   337   shows "App t1 s\<longrightarrow>b* App t2 s"
       
   338     and "App s t1 \<longrightarrow>b* App s t2"
       
   339 using a by (induct) (blast)+
       
   340 
       
   341 lemma Beta_App_cong:
       
   342   assumes a: "t1 \<longrightarrow>b* t2" "s1 \<longrightarrow>b* s2"
       
   343   shows "App t1 s1 \<longrightarrow>b* App t2 s2"
       
   344 using a by (blast intro: Beta_App_cong_aux)
       
   345 
       
   346 lemmas Beta_congs = Beta_Lam_cong Beta_App_cong
       
   347 
       
   348 lemma One_implies_Beta_star:
       
   349   assumes a: "t \<longrightarrow>1 s"
       
   350   shows "t \<longrightarrow>b* s"
       
   351 using a by (induct, auto intro!: Beta_congs)
       
   352   (metis (hide_lams, no_types) Beta_App_cong_aux(1) Beta_App_cong_aux(2) Beta_Lam_cong b4 bs2 bs3 fresh_PairD(2))
       
   353 
       
   354 lemma One_congs:
       
   355   assumes a: "t1 \<longrightarrow>1* t2"
       
   356   shows "Lam [x].t1 \<longrightarrow>1* Lam [x].t2"
       
   357   and   "App t1 s \<longrightarrow>1* App t2 s"
       
   358   and   "App s t1 \<longrightarrow>1* App s t2"
       
   359 using a by (induct) (auto intro: One_refl)
       
   360 
       
   361 lemma Beta_implies_One_star:
       
   362   assumes a: "t1 \<longrightarrow>b t2"
       
   363   shows "t1 \<longrightarrow>1* t2"
       
   364 using a by (induct) (auto intro: One_refl One_congs better_o4_intro)
       
   365 
       
   366 lemma Beta_star_equals_One_star:
       
   367   shows "t1 \<longrightarrow>1* t2 = t1 \<longrightarrow>b* t2"
       
   368 proof
       
   369   assume "t1 \<longrightarrow>1* t2"
       
   370   then show "t1 \<longrightarrow>b* t2" by (induct) (auto intro: One_implies_Beta_star)
       
   371 next
       
   372   assume "t1 \<longrightarrow>b* t2"
       
   373   then show "t1 \<longrightarrow>1* t2" by (induct) (auto intro: Beta_implies_One_star)
       
   374 qed
       
   375 
       
   376 section {* The Church-Rosser Theorem *}
       
   377 
       
   378 theorem CR_for_Beta_star:
       
   379   assumes a: "t \<longrightarrow>b* t1" "t\<longrightarrow>b* t2"
       
   380   shows "\<exists>t3. t1 \<longrightarrow>b* t3 \<and> t2 \<longrightarrow>b* t3"
       
   381 proof -
       
   382   from a have "t \<longrightarrow>1* t1" and "t\<longrightarrow>1* t2" by (simp_all add: Beta_star_equals_One_star)
       
   383   then have "\<exists>t3. t1 \<longrightarrow>1* t3 \<and> t2 \<longrightarrow>1* t3" by (simp add: CR_for_One_star)
       
   384   then show "\<exists>t3. t1 \<longrightarrow>b* t3 \<and> t2 \<longrightarrow>b* t3" by (simp add: Beta_star_equals_One_star)
       
   385 qed
       
   386 
       
   387 end