Nominal/Ex/CPS/CPS3_DanvyFilinski.thy
branchNominal2-Isabelle2013
changeset 3208 da575186d492
parent 3206 fb201e383f1b
child 3209 2fb0bc0dcbf1
equal deleted inserted replaced
3206:fb201e383f1b 3208:da575186d492
     1 header {* CPS transformation of Danvy and Filinski *}
       
     2 theory CPS3_DanvyFilinski imports Lt begin
       
     3 
       
     4 nominal_primrec
       
     5   CPS1 :: "lt \<Rightarrow> (lt \<Rightarrow> lt) \<Rightarrow> lt" ("_*_"  [100,100] 100)
       
     6 and
       
     7   CPS2 :: "lt \<Rightarrow> lt \<Rightarrow> lt" ("_^_" [100,100] 100)
       
     8 where
       
     9   "eqvt k \<Longrightarrow> (x~)*k = k (x~)"
       
    10 | "eqvt k \<Longrightarrow> (M$$N)*k = M*(%m. (N*(%n.((m $$ n) $$ (Lam c (k (c~)))))))"
       
    11 | "eqvt k \<Longrightarrow> atom c \<sharp> (x, M) \<Longrightarrow> (Lam x M)*k = k (Lam x (Lam c (M^(c~))))"
       
    12 | "\<not>eqvt k \<Longrightarrow> (CPS1 t k) = t"
       
    13 | "(x~)^l = l $$ (x~)"
       
    14 | "(M$$N)^l = M*(%m. (N*(%n.((m $$ n) $$ l))))"
       
    15 | "atom c \<sharp> (x, M) \<Longrightarrow> (Lam x M)^l = l $$ (Lam x (Lam c (M^(c~))))"
       
    16   apply (simp add: eqvt_def CPS1_CPS2_graph_aux_def)
       
    17   using [[simproc del: alpha_lst]]
       
    18   apply auto
       
    19   apply (case_tac x)
       
    20   apply (case_tac a)
       
    21   apply (case_tac "eqvt b")
       
    22   apply (rule_tac y="aa" in lt.strong_exhaust)
       
    23   apply auto[4]
       
    24   apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
       
    25   apply (simp add: fresh_at_base Abs1_eq_iff)
       
    26   apply (case_tac b)
       
    27   apply (rule_tac y="a" in lt.strong_exhaust)
       
    28   apply auto[3]
       
    29   apply blast+
       
    30   apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) 
       
    31   apply (simp add: fresh_at_base Abs1_eq_iff)
       
    32 --"-"
       
    33   apply (subgoal_tac "Lam c (ka (c~)) = Lam ca (ka (ca~))")
       
    34   apply (simp only:)
       
    35   apply (simp add: Abs1_eq_iff)
       
    36   apply (case_tac "c=ca")
       
    37   apply simp_all[2]
       
    38   apply rule
       
    39   apply (perm_simp)
       
    40   apply (simp add: eqvt_def)
       
    41   apply (simp add: fresh_def)
       
    42   apply (rule contra_subsetD[OF supp_fun_app])
       
    43   back
       
    44   apply (simp add: supp_fun_eqvt lt.supp supp_at_base)
       
    45 oops
       
    46 
       
    47 
       
    48 end
       
    49 
       
    50 
       
    51