1 theory Beta |
|
2 imports |
|
3 "../Nominal2" |
|
4 begin |
|
5 |
|
6 |
|
7 atom_decl name |
|
8 |
|
9 |
|
10 nominal_datatype lam = |
|
11 Var "name" |
|
12 | App "lam" "lam" |
|
13 | Lam x::"name" l::"lam" binds x in l ("Lam [_]. _" [100, 100] 100) |
|
14 |
|
15 section {* capture-avoiding substitution *} |
|
16 |
|
17 nominal_primrec |
|
18 subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" ("_ [_ ::= _]" [90, 90, 90] 90) |
|
19 where |
|
20 "(Var x)[y ::= s] = (if x = y then s else (Var x))" |
|
21 | "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])" |
|
22 | "\<lbrakk>atom x \<sharp> y; atom x \<sharp> s\<rbrakk> \<Longrightarrow> (Lam [x]. t)[y ::= s] = Lam [x].(t[y ::= s])" |
|
23 unfolding eqvt_def subst_graph_def |
|
24 apply (rule, perm_simp, rule) |
|
25 apply(rule TrueI) |
|
26 apply(auto simp add: lam.distinct lam.eq_iff) |
|
27 apply(rule_tac y="a" and c="(aa, b)" in lam.strong_exhaust) |
|
28 apply(blast)+ |
|
29 apply(simp_all add: fresh_star_def fresh_Pair_elim) |
|
30 apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2) |
|
31 apply(simp_all add: Abs_fresh_iff) |
|
32 apply(simp add: fresh_star_def fresh_Pair) |
|
33 apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq) |
|
34 apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq) |
|
35 done |
|
36 |
|
37 termination (eqvt) |
|
38 by lexicographic_order |
|
39 |
|
40 lemma forget: |
|
41 shows "atom x \<sharp> t \<Longrightarrow> t[x ::= s] = t" |
|
42 by (nominal_induct t avoiding: x s rule: lam.strong_induct) |
|
43 (auto simp add: lam.fresh fresh_at_base) |
|
44 |
|
45 lemma fresh_fact: |
|
46 fixes z::"name" |
|
47 assumes a: "atom z \<sharp> s" |
|
48 and b: "z = y \<or> atom z \<sharp> t" |
|
49 shows "atom z \<sharp> t[y ::= s]" |
|
50 using a b |
|
51 by (nominal_induct t avoiding: z y s rule: lam.strong_induct) |
|
52 (auto simp add: lam.fresh fresh_at_base) |
|
53 |
|
54 lemma substitution_lemma: |
|
55 assumes a: "x \<noteq> y" "atom x \<sharp> u" |
|
56 shows "t[x ::= s][y ::= u] = t[y ::= u][x ::= s[y ::= u]]" |
|
57 using a |
|
58 by (nominal_induct t avoiding: x y s u rule: lam.strong_induct) |
|
59 (auto simp add: fresh_fact forget) |
|
60 |
|
61 inductive |
|
62 beta :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<rightarrow> _") |
|
63 where |
|
64 beta_beta: "atom x \<sharp> s \<Longrightarrow> App (Lam [x].t) s \<rightarrow> t[x ::= s]" |
|
65 | beta_Lam: "t \<rightarrow> s \<Longrightarrow> Lam [x].t \<rightarrow> Lam [x].s" |
|
66 | beta_App1: "t \<rightarrow> s \<Longrightarrow> App t u \<rightarrow> App s u" |
|
67 | beta_App2: "t \<rightarrow> s \<Longrightarrow> App u t \<rightarrow> App u s" |
|
68 |
|
69 equivariance beta |
|
70 |
|
71 nominal_inductive beta |
|
72 avoids beta_beta: "x" |
|
73 | beta_Lam: "x" |
|
74 by (simp_all add: fresh_star_def fresh_Pair lam.fresh fresh_fact) |
|
75 |
|
76 inductive |
|
77 equ :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<approx> _") |
|
78 where |
|
79 equ_beta: "atom x \<sharp> s \<Longrightarrow> App (Lam [x].t) s \<approx> t[x ::= s]" |
|
80 | equ_refl: "t \<approx> t" |
|
81 | equ_sym: "t \<approx> s \<Longrightarrow> s \<approx> t" |
|
82 | equ_trans: "\<lbrakk>t1 \<approx> t2; t2 \<approx> t3\<rbrakk> \<Longrightarrow> t1 \<approx> t3" |
|
83 | equ_Lam: "t \<approx> s \<Longrightarrow> Lam [x].t \<approx> Lam [x].s" |
|
84 | equ_App1: "t \<approx> s \<Longrightarrow> App t u \<approx> App s u" |
|
85 | equ_App2: "t \<approx> s \<Longrightarrow> App u t \<approx> App u s" |
|
86 |
|
87 equivariance equ |
|
88 |
|
89 nominal_inductive equ |
|
90 avoids equ_beta: "x" |
|
91 | equ_Lam: "x" |
|
92 by (simp_all add: fresh_star_def fresh_Pair lam.fresh fresh_fact) |
|
93 |
|
94 inductive |
|
95 equ2 :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<approx>2 _") |
|
96 where |
|
97 equ2_beta1: "\<lbrakk>atom x \<sharp> (t2, s2); s1 \<approx>2 t1; t2 \<approx>2 s2\<rbrakk> \<Longrightarrow> App (Lam [x].t1) t2 \<approx>2 s1[x ::= s2]" |
|
98 | equ2_beta2: "\<lbrakk>atom x \<sharp> (t2, s2); s1 \<approx>2 t1; t2 \<approx>2 s2\<rbrakk> \<Longrightarrow> s1[x ::= s2] \<approx>2 App (Lam [x].t1) t2" |
|
99 | equ2_Var: "Var x \<approx>2 Var x" |
|
100 | equ2_Lam: "t \<approx>2 s \<Longrightarrow> Lam [x].t \<approx>2 Lam [x].s" |
|
101 | equ2_App: "\<lbrakk>t1 \<approx>2 s1; t2 \<approx>2 s2\<rbrakk> \<Longrightarrow> App t1 t2 \<approx>2 App s1 s2" |
|
102 |
|
103 equivariance equ2 |
|
104 |
|
105 nominal_inductive equ2 |
|
106 avoids equ2_beta1: "x" |
|
107 | equ2_beta2: "x" |
|
108 | equ2_Lam: "x" |
|
109 by (simp_all add: fresh_star_def fresh_Pair lam.fresh fresh_fact) |
|
110 |
|
111 lemma equ2_refl: |
|
112 fixes t::"lam" |
|
113 shows "t \<approx>2 t" |
|
114 apply(induct t rule: lam.induct) |
|
115 apply(auto intro: equ2.intros) |
|
116 done |
|
117 |
|
118 lemma equ2_symm: |
|
119 fixes t s::"lam" |
|
120 assumes "t \<approx>2 s" |
|
121 shows "s \<approx>2 t" |
|
122 using assms |
|
123 apply(induct) |
|
124 apply(auto intro: equ2.intros) |
|
125 done |
|
126 |
|
127 lemma equ2_trans: |
|
128 fixes t1 t2 t3::"lam" |
|
129 assumes "t1 \<approx>2 t2" "t2 \<approx>2 t3" |
|
130 shows "t1 \<approx>2 t3" |
|
131 using assms |
|
132 apply(nominal_induct t1 t2 avoiding: t3 rule: equ2.strong_induct) |
|
133 defer |
|
134 defer |
|
135 apply(erule equ2.cases) |
|
136 apply(auto) |
|
137 apply(rule equ2_beta2) |
|
138 apply(simp) |
|
139 apply(simp) |
|
140 apply(simp) |
|
141 apply(rule equ2_refl) |
|
142 defer |
|
143 apply(rotate_tac 4) |
|
144 apply(erule equ2.cases) |
|
145 apply(auto) |
|
146 oops |
|
147 |
|
148 lemma "a \<noteq> x \<Longrightarrow> x \<noteq> y \<Longrightarrow> y \<noteq> a \<Longrightarrow> y \<noteq> b \<Longrightarrow> (App (App (Lam[x]. Lam[y]. (App (Var y) (Var x))) (Var a)) (Var b) \<approx> App (Var b) (Var a))" |
|
149 apply (rule equ_trans) |
|
150 apply (rule equ_App1) |
|
151 apply (rule equ_beta) |
|
152 apply (simp add: lam.fresh fresh_at_base) |
|
153 apply (subst subst.simps) |
|
154 apply (simp add: lam.fresh fresh_at_base)+ |
|
155 apply (rule equ_trans) |
|
156 apply (rule equ_beta) |
|
157 apply (simp add: lam.fresh fresh_at_base) |
|
158 apply (simp add: equ_refl) |
|
159 done |
|
160 |
|
161 lemma "\<not> (Var b \<approx>2 Var a) \<Longrightarrow> \<not> (App (App (Lam[x]. Lam[y]. (App (Var y) (Var x))) (Var a)) (Var b) \<approx>2 App (Var b) (Var a))" |
|
162 apply rule |
|
163 apply (erule equ2.cases) |
|
164 apply auto |
|
165 done |
|
166 |
|
167 lemma [quot_respect]: |
|
168 shows "(op = ===> equ) Var Var" |
|
169 and "(equ ===> equ ===> equ) App App" |
|
170 and "(op = ===> equ ===> equ) Beta.Lam Beta.Lam" |
|
171 unfolding fun_rel_def |
|
172 by (auto intro: equ.intros) |
|
173 |
|
174 lemma equ_subst1: |
|
175 assumes "t \<approx> s" |
|
176 shows "t[x ::= u] \<approx> s[x ::= u]" |
|
177 using assms |
|
178 apply(nominal_induct avoiding: x u rule: equ.strong_induct) |
|
179 apply(simp) |
|
180 apply(rule equ_trans) |
|
181 apply(rule equ_beta) |
|
182 apply(simp add: fresh_fact) |
|
183 apply(subst (2) substitution_lemma) |
|
184 apply(simp add: fresh_at_base) |
|
185 apply(simp) |
|
186 apply(rule equ_refl) |
|
187 apply(rule equ_refl) |
|
188 apply(auto intro: equ_sym)[1] |
|
189 apply(blast intro: equ_trans) |
|
190 apply(simp add: equ_Lam) |
|
191 apply(simp add: equ_App1) |
|
192 apply(simp add: equ_App2) |
|
193 done |
|
194 |
|
195 lemma equ_subst2: |
|
196 assumes "t \<approx> s" |
|
197 shows "u[x ::= t] \<approx> u[x ::= s]" |
|
198 using assms |
|
199 apply(nominal_induct u avoiding: x t s rule: lam.strong_induct) |
|
200 apply(simp add: equ_refl) |
|
201 apply(simp) |
|
202 apply(smt equ_App1 equ_App2 equ_trans) |
|
203 apply(simp) |
|
204 apply(metis equ_Lam) |
|
205 done |
|
206 |
|
207 lemma [quot_respect]: |
|
208 shows "(equ ===> op = ===> equ ===> equ) subst subst" |
|
209 unfolding fun_rel_def |
|
210 by (metis equ_subst1 equ_subst2 equ_trans) |
|
211 |
|
212 lemma [quot_respect]: |
|
213 shows "(op = ===> equ ===> equ) permute permute" |
|
214 unfolding fun_rel_def |
|
215 by (auto intro: eqvts) |
|
216 |
|
217 quotient_type qlam = lam / equ |
|
218 apply(rule equivpI) |
|
219 apply(rule reflpI) |
|
220 apply(simp add: equ_refl) |
|
221 apply(rule sympI) |
|
222 apply(simp add: equ_sym) |
|
223 apply(rule transpI) |
|
224 apply(auto intro: equ_trans) |
|
225 done |
|
226 |
|
227 quotient_definition "QVar::name \<Rightarrow> qlam" is Var |
|
228 quotient_definition "QApp::qlam \<Rightarrow> qlam \<Rightarrow> qlam" is App |
|
229 quotient_definition QLam ("QLam [_]._") |
|
230 where "QLam::name \<Rightarrow> qlam \<Rightarrow> qlam" is Beta.Lam |
|
231 |
|
232 lemmas qlam_strong_induct = lam.strong_induct[quot_lifted] |
|
233 lemmas qlam_induct = lam.induct[quot_lifted] |
|
234 |
|
235 instantiation qlam :: pt |
|
236 begin |
|
237 |
|
238 quotient_definition "permute_qlam::perm \<Rightarrow> qlam \<Rightarrow> qlam" |
|
239 is "permute::perm \<Rightarrow> lam \<Rightarrow> lam" |
|
240 |
|
241 instance |
|
242 apply default |
|
243 apply(descending) |
|
244 apply(simp) |
|
245 apply(rule equ_refl) |
|
246 apply(descending) |
|
247 apply(simp) |
|
248 apply(rule equ_refl) |
|
249 done |
|
250 |
|
251 end |
|
252 |
|
253 lemma qlam_perm[simp]: |
|
254 shows "p \<bullet> (QVar x) = QVar (p \<bullet> x)" |
|
255 and "p \<bullet> (QApp t s) = QApp (p \<bullet> t) (p \<bullet> s)" |
|
256 and "p \<bullet> (QLam [x].t) = QLam [p \<bullet> x].(p \<bullet> t)" |
|
257 apply(descending) |
|
258 apply(simp add: equ_refl) |
|
259 apply(descending) |
|
260 apply(simp add: equ_refl) |
|
261 apply(descending) |
|
262 apply(simp add: equ_refl) |
|
263 done |
|
264 |
|
265 lemma qlam_supports: |
|
266 shows "{atom x} supports (QVar x)" |
|
267 and "supp (t, s) supports (QApp t s)" |
|
268 and "supp (x, t) supports (QLam [x].t)" |
|
269 unfolding supports_def fresh_def[symmetric] |
|
270 by (auto simp add: swap_fresh_fresh) |
|
271 |
|
272 lemma qlam_fs: |
|
273 fixes t::"qlam" |
|
274 shows "finite (supp t)" |
|
275 apply(induct t rule: qlam_induct) |
|
276 apply(rule supports_finite) |
|
277 apply(rule qlam_supports) |
|
278 apply(simp) |
|
279 apply(rule supports_finite) |
|
280 apply(rule qlam_supports) |
|
281 apply(simp add: supp_Pair) |
|
282 apply(rule supports_finite) |
|
283 apply(rule qlam_supports) |
|
284 apply(simp add: supp_Pair finite_supp) |
|
285 done |
|
286 |
|
287 instantiation qlam :: fs |
|
288 begin |
|
289 |
|
290 instance |
|
291 apply(default) |
|
292 apply(rule qlam_fs) |
|
293 done |
|
294 |
|
295 end |
|
296 |
|
297 quotient_definition subst_qlam ("_[_ ::q= _]") |
|
298 where "subst_qlam::qlam \<Rightarrow> name \<Rightarrow> qlam \<Rightarrow> qlam" is subst |
|
299 |
|
300 lemma |
|
301 "(QVar x)[y ::q= s] = (if x = y then s else (QVar x))" |
|
302 apply(descending) |
|
303 apply(simp) |
|
304 apply(auto intro: equ_refl) |
|
305 done |
|
306 |
|
307 lemma |
|
308 "(QApp t1 t2)[y ::q= s] = QApp (t1[y ::q= s]) (t2[y ::q= s])" |
|
309 apply(descending) |
|
310 apply(simp) |
|
311 apply(rule equ_refl) |
|
312 done |
|
313 |
|
314 definition |
|
315 "Supp t = \<Inter>{supp s | s. s \<approx> t}" |
|
316 |
|
317 lemma [quot_respect]: |
|
318 shows "(equ ===> op=) Supp Supp" |
|
319 unfolding fun_rel_def |
|
320 unfolding Supp_def |
|
321 apply(rule allI)+ |
|
322 apply(rule impI) |
|
323 apply(rule_tac f="Inter" in arg_cong) |
|
324 apply(auto) |
|
325 apply (metis equ_trans) |
|
326 by (metis equivp_def qlam_equivp) |
|
327 |
|
328 quotient_definition "supp_qlam::qlam \<Rightarrow> atom set" |
|
329 is "Supp::lam \<Rightarrow> atom set" |
|
330 |
|
331 lemma Supp_supp: |
|
332 "Supp t \<subseteq> supp t" |
|
333 unfolding Supp_def |
|
334 apply(auto) |
|
335 apply(drule_tac x="supp t" in spec) |
|
336 apply(auto simp add: equ_refl) |
|
337 done |
|
338 |
|
339 lemma Supp_Lam: |
|
340 "atom a \<notin> Supp (Lam [a].t)" |
|
341 proof - |
|
342 have "atom a \<notin> supp (Lam [a].t)" by (simp add: lam.supp) |
|
343 then show ?thesis using Supp_supp |
|
344 by blast |
|
345 qed |
|
346 |
|
347 lemmas s = Supp_Lam[quot_lifted] |
|
348 |
|
349 definition |
|
350 ssupp :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ ssupp _") |
|
351 where |
|
352 "A ssupp x \<equiv> \<forall>p. (\<forall>a \<in> A. (p \<bullet> a) = a) \<longleftrightarrow> (p \<bullet> x) = x" |
|
353 |
|
354 lemma ssupp_supports: |
|
355 "A ssupp x \<Longrightarrow> A supports x" |
|
356 unfolding ssupp_def supports_def |
|
357 apply(rule allI)+ |
|
358 apply(drule_tac x="(a \<rightleftharpoons> b)" in spec) |
|
359 apply(auto) |
|
360 by (metis swap_atom_simps(3)) |
|
361 |
|
362 lemma ssupp_supp: |
|
363 assumes a: "finite A" |
|
364 and b: "A ssupp x" |
|
365 shows "supp x = A" |
|
366 proof - |
|
367 { assume 0: "A - supp x \<noteq> {}" |
|
368 then obtain a where 1: "a \<in> A - supp x" by auto |
|
369 obtain a' where *: "a' \<in> UNIV - A" and **: "sort_of a' = sort_of a" |
|
370 by (rule obtain_atom[OF a]) (auto) |
|
371 have "(a \<rightleftharpoons> a') \<bullet> a = a'" using 1 ** * by (auto) |
|
372 then have w0: "(a \<rightleftharpoons> a') \<bullet> x \<noteq> x" |
|
373 using b unfolding ssupp_def |
|
374 apply - |
|
375 apply(drule_tac x="(a \<rightleftharpoons> a')" in spec) |
|
376 apply(auto) |
|
377 using 1 * |
|
378 apply(auto) |
|
379 done |
|
380 have w1: "a \<sharp> x" unfolding fresh_def using 1 by auto |
|
381 have w2: "a' \<sharp> x" using * |
|
382 apply(rule_tac supports_fresh) |
|
383 apply(rule ssupp_supports) |
|
384 apply(rule b) |
|
385 apply(rule a) |
|
386 apply(auto) |
|
387 done |
|
388 have "False" using w0 w1 w2 by (simp add: swap_fresh_fresh) |
|
389 then have "supp x = A" by simp } |
|
390 moreover |
|
391 { assume "A - supp x = {}" |
|
392 moreover |
|
393 have "supp x \<subseteq> A" |
|
394 apply(rule supp_is_subset) |
|
395 apply(rule ssupp_supports) |
|
396 apply(rule b) |
|
397 apply(rule a) |
|
398 done |
|
399 ultimately have "supp x = A" |
|
400 by blast |
|
401 } |
|
402 ultimately show "supp x = A" by blast |
|
403 qed |
|
404 |
|
405 lemma |
|
406 "(supp x) ssupp x" |
|
407 unfolding ssupp_def |
|
408 apply(auto) |
|
409 apply(rule supp_perm_eq) |
|
410 apply(simp add: fresh_star_def) |
|
411 apply(auto) |
|
412 apply(simp add: fresh_perm) |
|
413 apply(simp add: fresh_perm[symmetric]) |
|
414 (*Tzevelekos 2008, section 2.1.2 property 2.5*) |
|
415 oops |
|
416 |
|
417 (* The above is not true. Take p=(a\<leftrightarrow>b) and x={a,b}, then the goal is provably false *) |
|
418 lemma |
|
419 "b \<noteq> a \<Longrightarrow> \<not>(supp {a :: name,b}) ssupp {a,b}" |
|
420 unfolding ssupp_def |
|
421 apply (auto) |
|
422 apply (intro exI[of _ "(a\<leftrightarrow>b) :: perm"]) |
|
423 apply (subgoal_tac "(a \<leftrightarrow> b) \<bullet> {a, b} = {a, b}") |
|
424 apply simp |
|
425 apply (subgoal_tac "supp {a, b} = {atom a, atom b}") |
|
426 apply (simp add: flip_def) |
|
427 apply (simp add: supp_of_finite_insert supp_at_base supp_set_empty) |
|
428 apply blast |
|
429 by (smt empty_eqvt flip_at_simps(1) flip_at_simps(2) insert_commute insert_eqvt) |
|
430 |
|
431 function |
|
432 qsubst :: "qlam \<Rightarrow> name \<Rightarrow> qlam \<Rightarrow> qlam" ("_ [_ ::qq= _]" [90, 90, 90] 90) |
|
433 where |
|
434 "(QVar x)[y ::qq= s] = (if x = y then s else (QVar x))" |
|
435 | "(QApp t1 t2)[y ::qq= s] = QApp (t1[y ::qq= s]) (t2[y ::qq= s])" |
|
436 | "\<lbrakk>atom x \<sharp> y; atom x \<sharp> s\<rbrakk> \<Longrightarrow> (QLam [x]. t)[y ::qq= s] = QLam [x].(t[y ::qq= s])" |
|
437 apply(simp_all add:) |
|
438 oops |
|
439 |
|
440 |
|
441 lemma |
|
442 assumes a: "Lam [x].t \<approx> s" |
|
443 shows "\<exists>x' t'. s = Lam [x']. t' \<and> t \<approx> t'" |
|
444 using a |
|
445 apply(induct s rule:lam.induct) |
|
446 apply(erule equ.cases) |
|
447 apply(auto) |
|
448 apply(erule equ.cases) |
|
449 apply(auto) |
|
450 |
|
451 |
|
452 |
|
453 lemma |
|
454 "atom x \<sharp> y \<Longrightarrow> atom x \<notin> supp_qlam s \<Longrightarrow> (QLam [x].t)[y ::q= s] = QLam [x].(t[y ::q= s])" |
|
455 apply(descending) |
|
456 oops |
|
457 |
|
458 |
|
459 lemma [eqvt]: "(p \<bullet> abs_qlam t) = abs_qlam (p \<bullet> t)" |
|
460 apply (subst fun_cong[OF fun_cong[OF meta_eq_to_obj_eq[OF permute_qlam_def]], of p, simplified]) |
|
461 apply (subst Quotient_rel[OF Quotient_qlam, simplified equivp_reflp[OF qlam_equivp], simplified]) |
|
462 by (metis Quotient_qlam equ_refl eqvt rep_abs_rsp_left) |
|
463 |
|
464 lemma supports_abs_qlam: |
|
465 "(supp t) supports (abs_qlam t)" |
|
466 unfolding supports_def |
|
467 unfolding fresh_def[symmetric] |
|
468 apply(auto) |
|
469 apply(perm_simp) |
|
470 apply(simp add: swap_fresh_fresh) |
|
471 done |
|
472 |
|
473 lemma rep_qlam_inverse: |
|
474 "abs_qlam (rep_qlam t) = t" |
|
475 by (metis Quotient_abs_rep Quotient_qlam) |
|
476 |
|
477 lemma supports_rep_qlam: |
|
478 "supp (rep_qlam t) supports t" |
|
479 apply(subst (2) rep_qlam_inverse[symmetric]) |
|
480 apply(rule supports_abs_qlam) |
|
481 done |
|
482 |
|
483 lemma supports_qvar: |
|
484 "{atom x} supports (QVar x)" |
|
485 apply(subgoal_tac "supp (Var x) supports (abs_qlam (Var x))") |
|
486 apply(simp add: lam.supp supp_at_base) |
|
487 defer |
|
488 apply(rule supports_abs_qlam) |
|
489 apply(simp add: QVar_def) |
|
490 done |
|
491 |
|
492 section {* Supp *} |
|
493 |
|
494 lemma s: |
|
495 assumes "s \<approx> t" |
|
496 shows "a \<sharp> (abs_qlam s) \<longleftrightarrow> a \<sharp> (abs_qlam t)" |
|
497 using assms |
|
498 by (metis Quotient_qlam Quotient_rel_abs) |
|
499 |
|
500 lemma ss: |
|
501 "Supp t supports (abs_qlam t)" |
|
502 apply(simp only: supports_def) |
|
503 apply(rule allI)+ |
|
504 apply(rule impI) |
|
505 apply(rule swap_fresh_fresh) |
|
506 apply(drule conjunct1) |
|
507 apply(auto)[1] |
|
508 apply(simp add: Supp_def) |
|
509 apply(auto)[1] |
|
510 apply(simp add: s[symmetric]) |
|
511 apply(rule supports_fresh) |
|
512 apply(rule supports_abs_qlam) |
|
513 apply(simp add: finite_supp) |
|
514 apply(simp) |
|
515 apply(drule conjunct2) |
|
516 apply(auto)[1] |
|
517 apply(simp add: Supp_def) |
|
518 apply(auto)[1] |
|
519 apply(simp add: s[symmetric]) |
|
520 apply(rule supports_fresh) |
|
521 apply(rule supports_abs_qlam) |
|
522 apply(simp add: finite_supp) |
|
523 apply(simp) |
|
524 done |
|
525 |
|
526 lemma |
|
527 fixes t::"qlam" |
|
528 shows "(supp x) supports (QVar x)" |
|
529 apply(rule_tac x="QVar x" in Abs_qlam_cases) |
|
530 apply(auto) |
|
531 thm QVar_def |
|
532 oops |
|
533 |
|
534 |
|
535 |
|
536 section {* Size *} |
|
537 |
|
538 definition |
|
539 "Size t = Least {size s | s. s \<approx> t}" |
|
540 |
|
541 lemma [quot_respect]: |
|
542 shows "(equ ===> op=) Size Size" |
|
543 unfolding fun_rel_def |
|
544 unfolding Size_def |
|
545 apply(auto) |
|
546 apply(rule_tac f="Least" in arg_cong) |
|
547 apply(auto) |
|
548 apply (metis equ_trans) |
|
549 by (metis equivp_def qlam_equivp) |
|
550 |
|
551 instantiation qlam :: size |
|
552 begin |
|
553 |
|
554 quotient_definition "size_qlam::qlam \<Rightarrow> nat" |
|
555 is "Size::lam \<Rightarrow> nat" |
|
556 |
|
557 instance |
|
558 apply default |
|
559 done |
|
560 |
|
561 end |
|
562 |
|
563 thm lam.size |
|
564 |
|
565 lemma |
|
566 "size (QVar x) = 0" |
|
567 apply(descending) |
|
568 apply(simp add: Size_def) |
|
569 apply(rule Least_equality) |
|
570 apply(auto) |
|
571 apply(simp add: Collect_def) |
|
572 apply(rule_tac x="Var x" in exI) |
|
573 apply(auto intro: equ_refl) |
|
574 done |
|
575 |
|
576 lemma |
|
577 "size (QLam [x].t) = Suc (size t)" |
|
578 apply(descending) |
|
579 apply(simp add: Size_def) |
|
580 thm Least_Suc |
|
581 apply(rule trans) |
|
582 apply(rule_tac n="Suc (size t)" in Least_Suc) |
|
583 apply(simp add: Collect_def) |
|
584 apply(rule_tac x="Lam [x].t" in exI) |
|
585 apply(auto intro: equ_refl)[1] |
|
586 apply(simp add: Collect_def) |
|
587 apply(auto) |
|
588 defer |
|
589 apply(simp add: Collect_def) |
|
590 apply(rule_tac x="t" in exI) |
|
591 apply(auto intro: equ_refl)[1] |
|
592 apply(simp add: Collect_def) |
|
593 defer |
|
594 apply(simp add: Collect_def) |
|
595 apply(auto)[1] |
|
596 |
|
597 apply(auto) |
|
598 done |
|
599 |
|
600 term rep_qlam |
|
601 lemmas qlam_size_def = Size_def[quot_lifted] |
|
602 |
|
603 lemma [quot_preserve]: |
|
604 assumes "Quotient equ Abs Rep" |
|
605 shows "(id ---> Rep ---> id) fresh = fresh" |
|
606 using assms |
|
607 unfolding Quotient_def |
|
608 apply(simp add: map_fun_def) |
|
609 apply(simp add: comp_def fun_eq_iff) |
|
610 |
|
611 sorry |
|
612 |
|
613 lemma [simp]: |
|
614 shows "(QVar x)[y :::= s] = (if x = y then s else (QVar x))" |
|
615 and "(QApp t1 t2)[y :::= s] = QApp (t1[y :::= s]) (t2[y :::= s])" |
|
616 and "\<lbrakk>atom x \<sharp> y; atom x \<sharp> s\<rbrakk> \<Longrightarrow> (QLam [x]. t)[y :::= s] = QLam [x].(t[y :::= s])" |
|
617 apply(lifting subst.simps(1)) |
|
618 apply(lifting subst.simps(2)) |
|
619 apply(lifting subst.simps(3)) |
|
620 done |
|
621 |
|
622 |
|
623 |
|
624 end |
|
625 |
|
626 |
|
627 |
|