1 (* Title: Quotient_List.thy |
|
2 Author: Cezary Kaliszyk and Christian Urban |
|
3 *) |
|
4 theory Quotient_List |
|
5 imports Quotient Quotient_Syntax List |
|
6 begin |
|
7 |
|
8 section {* Quotient infrastructure for the list type. *} |
|
9 |
|
10 fun |
|
11 list_rel |
|
12 where |
|
13 "list_rel R [] [] = True" |
|
14 | "list_rel R (x#xs) [] = False" |
|
15 | "list_rel R [] (x#xs) = False" |
|
16 | "list_rel R (x#xs) (y#ys) = (R x y \<and> list_rel R xs ys)" |
|
17 |
|
18 declare [[map list = (map, list_rel)]] |
|
19 |
|
20 lemma split_list_all: |
|
21 shows "(\<forall>x. P x) \<longleftrightarrow> P [] \<and> (\<forall>x xs. P (x#xs))" |
|
22 apply(auto) |
|
23 apply(case_tac x) |
|
24 apply(simp_all) |
|
25 done |
|
26 |
|
27 lemma map_id[id_simps]: |
|
28 shows "map id = id" |
|
29 apply(simp add: expand_fun_eq) |
|
30 apply(rule allI) |
|
31 apply(induct_tac x) |
|
32 apply(simp_all) |
|
33 done |
|
34 |
|
35 |
|
36 lemma list_rel_reflp: |
|
37 shows "equivp R \<Longrightarrow> list_rel R xs xs" |
|
38 apply(induct xs) |
|
39 apply(simp_all add: equivp_reflp) |
|
40 done |
|
41 |
|
42 lemma list_rel_symp: |
|
43 assumes a: "equivp R" |
|
44 shows "list_rel R xs ys \<Longrightarrow> list_rel R ys xs" |
|
45 apply(induct xs ys rule: list_induct2') |
|
46 apply(simp_all) |
|
47 apply(rule equivp_symp[OF a]) |
|
48 apply(simp) |
|
49 done |
|
50 |
|
51 lemma list_rel_transp: |
|
52 assumes a: "equivp R" |
|
53 shows "list_rel R xs1 xs2 \<Longrightarrow> list_rel R xs2 xs3 \<Longrightarrow> list_rel R xs1 xs3" |
|
54 apply(induct xs1 xs2 arbitrary: xs3 rule: list_induct2') |
|
55 apply(simp_all) |
|
56 apply(case_tac xs3) |
|
57 apply(simp_all) |
|
58 apply(rule equivp_transp[OF a]) |
|
59 apply(auto) |
|
60 done |
|
61 |
|
62 lemma list_equivp[quot_equiv]: |
|
63 assumes a: "equivp R" |
|
64 shows "equivp (list_rel R)" |
|
65 apply(rule equivpI) |
|
66 unfolding reflp_def symp_def transp_def |
|
67 apply(subst split_list_all) |
|
68 apply(simp add: equivp_reflp[OF a] list_rel_reflp[OF a]) |
|
69 apply(blast intro: list_rel_symp[OF a]) |
|
70 apply(blast intro: list_rel_transp[OF a]) |
|
71 done |
|
72 |
|
73 lemma list_rel_rel: |
|
74 assumes q: "Quotient R Abs Rep" |
|
75 shows "list_rel R r s = (list_rel R r r \<and> list_rel R s s \<and> (map Abs r = map Abs s))" |
|
76 apply(induct r s rule: list_induct2') |
|
77 apply(simp_all) |
|
78 using Quotient_rel[OF q] |
|
79 apply(metis) |
|
80 done |
|
81 |
|
82 lemma list_quotient[quot_thm]: |
|
83 assumes q: "Quotient R Abs Rep" |
|
84 shows "Quotient (list_rel R) (map Abs) (map Rep)" |
|
85 unfolding Quotient_def |
|
86 apply(subst split_list_all) |
|
87 apply(simp add: Quotient_abs_rep[OF q] abs_o_rep[OF q] map_id) |
|
88 apply(rule conjI) |
|
89 apply(rule allI) |
|
90 apply(induct_tac a) |
|
91 apply(simp) |
|
92 apply(simp) |
|
93 apply(simp add: Quotient_rep_reflp[OF q]) |
|
94 apply(rule allI)+ |
|
95 apply(rule list_rel_rel[OF q]) |
|
96 done |
|
97 |
|
98 |
|
99 lemma cons_prs_aux: |
|
100 assumes q: "Quotient R Abs Rep" |
|
101 shows "(map Abs) ((Rep h) # (map Rep t)) = h # t" |
|
102 by (induct t) (simp_all add: Quotient_abs_rep[OF q]) |
|
103 |
|
104 lemma cons_prs[quot_preserve]: |
|
105 assumes q: "Quotient R Abs Rep" |
|
106 shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)" |
|
107 by (simp only: expand_fun_eq fun_map_def cons_prs_aux[OF q]) |
|
108 (simp) |
|
109 |
|
110 lemma cons_rsp[quot_respect]: |
|
111 assumes q: "Quotient R Abs Rep" |
|
112 shows "(R ===> list_rel R ===> list_rel R) (op #) (op #)" |
|
113 by (auto) |
|
114 |
|
115 lemma nil_prs[quot_preserve]: |
|
116 assumes q: "Quotient R Abs Rep" |
|
117 shows "map Abs [] = []" |
|
118 by simp |
|
119 |
|
120 lemma nil_rsp[quot_respect]: |
|
121 assumes q: "Quotient R Abs Rep" |
|
122 shows "list_rel R [] []" |
|
123 by simp |
|
124 |
|
125 lemma map_prs_aux: |
|
126 assumes a: "Quotient R1 abs1 rep1" |
|
127 and b: "Quotient R2 abs2 rep2" |
|
128 shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l" |
|
129 by (induct l) |
|
130 (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) |
|
131 |
|
132 |
|
133 lemma map_prs[quot_preserve]: |
|
134 assumes a: "Quotient R1 abs1 rep1" |
|
135 and b: "Quotient R2 abs2 rep2" |
|
136 shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map" |
|
137 by (simp only: expand_fun_eq fun_map_def map_prs_aux[OF a b]) |
|
138 (simp) |
|
139 |
|
140 |
|
141 lemma map_rsp[quot_respect]: |
|
142 assumes q1: "Quotient R1 Abs1 Rep1" |
|
143 and q2: "Quotient R2 Abs2 Rep2" |
|
144 shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map" |
|
145 apply(simp) |
|
146 apply(rule allI)+ |
|
147 apply(rule impI) |
|
148 apply(rule allI)+ |
|
149 apply (induct_tac xa ya rule: list_induct2') |
|
150 apply simp_all |
|
151 done |
|
152 |
|
153 lemma foldr_prs_aux: |
|
154 assumes a: "Quotient R1 abs1 rep1" |
|
155 and b: "Quotient R2 abs2 rep2" |
|
156 shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e" |
|
157 by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) |
|
158 |
|
159 lemma foldr_prs[quot_preserve]: |
|
160 assumes a: "Quotient R1 abs1 rep1" |
|
161 and b: "Quotient R2 abs2 rep2" |
|
162 shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr" |
|
163 by (simp only: expand_fun_eq fun_map_def foldr_prs_aux[OF a b]) |
|
164 (simp) |
|
165 |
|
166 lemma foldl_prs_aux: |
|
167 assumes a: "Quotient R1 abs1 rep1" |
|
168 and b: "Quotient R2 abs2 rep2" |
|
169 shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" |
|
170 by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) |
|
171 |
|
172 |
|
173 lemma foldl_prs[quot_preserve]: |
|
174 assumes a: "Quotient R1 abs1 rep1" |
|
175 and b: "Quotient R2 abs2 rep2" |
|
176 shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl" |
|
177 by (simp only: expand_fun_eq fun_map_def foldl_prs_aux[OF a b]) |
|
178 (simp) |
|
179 |
|
180 lemma list_rel_empty: |
|
181 shows "list_rel R [] b \<Longrightarrow> length b = 0" |
|
182 by (induct b) (simp_all) |
|
183 |
|
184 lemma list_rel_len: |
|
185 shows "list_rel R a b \<Longrightarrow> length a = length b" |
|
186 apply (induct a arbitrary: b) |
|
187 apply (simp add: list_rel_empty) |
|
188 apply (case_tac b) |
|
189 apply simp_all |
|
190 done |
|
191 |
|
192 (* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *) |
|
193 lemma foldl_rsp[quot_respect]: |
|
194 assumes q1: "Quotient R1 Abs1 Rep1" |
|
195 and q2: "Quotient R2 Abs2 Rep2" |
|
196 shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl" |
|
197 apply(auto) |
|
198 apply (subgoal_tac "R1 xa ya \<longrightarrow> list_rel R2 xb yb \<longrightarrow> R1 (foldl x xa xb) (foldl y ya yb)") |
|
199 apply simp |
|
200 apply (rule_tac x="xa" in spec) |
|
201 apply (rule_tac x="ya" in spec) |
|
202 apply (rule_tac xs="xb" and ys="yb" in list_induct2) |
|
203 apply (rule list_rel_len) |
|
204 apply (simp_all) |
|
205 done |
|
206 |
|
207 lemma foldr_rsp[quot_respect]: |
|
208 assumes q1: "Quotient R1 Abs1 Rep1" |
|
209 and q2: "Quotient R2 Abs2 Rep2" |
|
210 shows "((R1 ===> R2 ===> R2) ===> list_rel R1 ===> R2 ===> R2) foldr foldr" |
|
211 apply auto |
|
212 apply(subgoal_tac "R2 xb yb \<longrightarrow> list_rel R1 xa ya \<longrightarrow> R2 (foldr x xa xb) (foldr y ya yb)") |
|
213 apply simp |
|
214 apply (rule_tac xs="xa" and ys="ya" in list_induct2) |
|
215 apply (rule list_rel_len) |
|
216 apply (simp_all) |
|
217 done |
|
218 |
|
219 lemma list_rel_eq[id_simps]: |
|
220 shows "(list_rel (op =)) = (op =)" |
|
221 unfolding expand_fun_eq |
|
222 apply(rule allI)+ |
|
223 apply(induct_tac x xa rule: list_induct2') |
|
224 apply(simp_all) |
|
225 done |
|
226 |
|
227 lemma list_rel_refl: |
|
228 assumes a: "\<And>x y. R x y = (R x = R y)" |
|
229 shows "list_rel R x x" |
|
230 by (induct x) (auto simp add: a) |
|
231 |
|
232 end |
|