Attic/Quot/Quotient_List.thy
branchNominal2-Isabelle2013
changeset 3208 da575186d492
parent 3206 fb201e383f1b
child 3209 2fb0bc0dcbf1
equal deleted inserted replaced
3206:fb201e383f1b 3208:da575186d492
     1 (*  Title:      Quotient_List.thy
       
     2     Author:     Cezary Kaliszyk and Christian Urban
       
     3 *)
       
     4 theory Quotient_List
       
     5 imports Quotient Quotient_Syntax List
       
     6 begin
       
     7 
       
     8 section {* Quotient infrastructure for the list type. *}
       
     9 
       
    10 fun
       
    11   list_rel
       
    12 where
       
    13   "list_rel R [] [] = True"
       
    14 | "list_rel R (x#xs) [] = False"
       
    15 | "list_rel R [] (x#xs) = False"
       
    16 | "list_rel R (x#xs) (y#ys) = (R x y \<and> list_rel R xs ys)"
       
    17 
       
    18 declare [[map list = (map, list_rel)]]
       
    19 
       
    20 lemma split_list_all:
       
    21   shows "(\<forall>x. P x) \<longleftrightarrow> P [] \<and> (\<forall>x xs. P (x#xs))"
       
    22   apply(auto)
       
    23   apply(case_tac x)
       
    24   apply(simp_all)
       
    25   done
       
    26 
       
    27 lemma map_id[id_simps]:
       
    28   shows "map id = id"
       
    29   apply(simp add: expand_fun_eq)
       
    30   apply(rule allI)
       
    31   apply(induct_tac x)
       
    32   apply(simp_all)
       
    33   done
       
    34 
       
    35 
       
    36 lemma list_rel_reflp:
       
    37   shows "equivp R \<Longrightarrow> list_rel R xs xs"
       
    38   apply(induct xs)
       
    39   apply(simp_all add: equivp_reflp)
       
    40   done
       
    41 
       
    42 lemma list_rel_symp:
       
    43   assumes a: "equivp R"
       
    44   shows "list_rel R xs ys \<Longrightarrow> list_rel R ys xs"
       
    45   apply(induct xs ys rule: list_induct2')
       
    46   apply(simp_all)
       
    47   apply(rule equivp_symp[OF a])
       
    48   apply(simp)
       
    49   done
       
    50 
       
    51 lemma list_rel_transp:
       
    52   assumes a: "equivp R"
       
    53   shows "list_rel R xs1 xs2 \<Longrightarrow> list_rel R xs2 xs3 \<Longrightarrow> list_rel R xs1 xs3"
       
    54   apply(induct xs1 xs2 arbitrary: xs3 rule: list_induct2')
       
    55   apply(simp_all)
       
    56   apply(case_tac xs3)
       
    57   apply(simp_all)
       
    58   apply(rule equivp_transp[OF a])
       
    59   apply(auto)
       
    60   done
       
    61 
       
    62 lemma list_equivp[quot_equiv]:
       
    63   assumes a: "equivp R"
       
    64   shows "equivp (list_rel R)"
       
    65   apply(rule equivpI)
       
    66   unfolding reflp_def symp_def transp_def
       
    67   apply(subst split_list_all)
       
    68   apply(simp add: equivp_reflp[OF a] list_rel_reflp[OF a])
       
    69   apply(blast intro: list_rel_symp[OF a])
       
    70   apply(blast intro: list_rel_transp[OF a])
       
    71   done
       
    72 
       
    73 lemma list_rel_rel:
       
    74   assumes q: "Quotient R Abs Rep"
       
    75   shows "list_rel R r s = (list_rel R r r \<and> list_rel R s s \<and> (map Abs r = map Abs s))"
       
    76   apply(induct r s rule: list_induct2')
       
    77   apply(simp_all)
       
    78   using Quotient_rel[OF q]
       
    79   apply(metis)
       
    80   done
       
    81 
       
    82 lemma list_quotient[quot_thm]:
       
    83   assumes q: "Quotient R Abs Rep"
       
    84   shows "Quotient (list_rel R) (map Abs) (map Rep)"
       
    85   unfolding Quotient_def
       
    86   apply(subst split_list_all)
       
    87   apply(simp add: Quotient_abs_rep[OF q] abs_o_rep[OF q] map_id)
       
    88   apply(rule conjI)
       
    89   apply(rule allI)
       
    90   apply(induct_tac a)
       
    91   apply(simp)
       
    92   apply(simp)
       
    93   apply(simp add: Quotient_rep_reflp[OF q])
       
    94   apply(rule allI)+
       
    95   apply(rule list_rel_rel[OF q])
       
    96   done
       
    97 
       
    98 
       
    99 lemma cons_prs_aux:
       
   100   assumes q: "Quotient R Abs Rep"
       
   101   shows "(map Abs) ((Rep h) # (map Rep t)) = h # t"
       
   102   by (induct t) (simp_all add: Quotient_abs_rep[OF q])
       
   103 
       
   104 lemma cons_prs[quot_preserve]:
       
   105   assumes q: "Quotient R Abs Rep"
       
   106   shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)"
       
   107   by (simp only: expand_fun_eq fun_map_def cons_prs_aux[OF q])
       
   108      (simp)
       
   109 
       
   110 lemma cons_rsp[quot_respect]:
       
   111   assumes q: "Quotient R Abs Rep"
       
   112   shows "(R ===> list_rel R ===> list_rel R) (op #) (op #)"
       
   113   by (auto)
       
   114 
       
   115 lemma nil_prs[quot_preserve]:
       
   116   assumes q: "Quotient R Abs Rep"
       
   117   shows "map Abs [] = []"
       
   118   by simp
       
   119 
       
   120 lemma nil_rsp[quot_respect]:
       
   121   assumes q: "Quotient R Abs Rep"
       
   122   shows "list_rel R [] []"
       
   123   by simp
       
   124 
       
   125 lemma map_prs_aux:
       
   126   assumes a: "Quotient R1 abs1 rep1"
       
   127   and     b: "Quotient R2 abs2 rep2"
       
   128   shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l"
       
   129   by (induct l)
       
   130      (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
       
   131 
       
   132 
       
   133 lemma map_prs[quot_preserve]:
       
   134   assumes a: "Quotient R1 abs1 rep1"
       
   135   and     b: "Quotient R2 abs2 rep2"
       
   136   shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map"
       
   137   by (simp only: expand_fun_eq fun_map_def map_prs_aux[OF a b])
       
   138      (simp)
       
   139 
       
   140 
       
   141 lemma map_rsp[quot_respect]:
       
   142   assumes q1: "Quotient R1 Abs1 Rep1"
       
   143   and     q2: "Quotient R2 Abs2 Rep2"
       
   144   shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map"
       
   145   apply(simp)
       
   146   apply(rule allI)+
       
   147   apply(rule impI)
       
   148   apply(rule allI)+
       
   149   apply (induct_tac xa ya rule: list_induct2')
       
   150   apply simp_all
       
   151   done
       
   152 
       
   153 lemma foldr_prs_aux:
       
   154   assumes a: "Quotient R1 abs1 rep1"
       
   155   and     b: "Quotient R2 abs2 rep2"
       
   156   shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e"
       
   157   by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
       
   158 
       
   159 lemma foldr_prs[quot_preserve]:
       
   160   assumes a: "Quotient R1 abs1 rep1"
       
   161   and     b: "Quotient R2 abs2 rep2"
       
   162   shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr"
       
   163   by (simp only: expand_fun_eq fun_map_def foldr_prs_aux[OF a b])
       
   164      (simp)
       
   165 
       
   166 lemma foldl_prs_aux:
       
   167   assumes a: "Quotient R1 abs1 rep1"
       
   168   and     b: "Quotient R2 abs2 rep2"
       
   169   shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l"
       
   170   by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
       
   171 
       
   172 
       
   173 lemma foldl_prs[quot_preserve]:
       
   174   assumes a: "Quotient R1 abs1 rep1"
       
   175   and     b: "Quotient R2 abs2 rep2"
       
   176   shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl"
       
   177   by (simp only: expand_fun_eq fun_map_def foldl_prs_aux[OF a b])
       
   178      (simp)
       
   179 
       
   180 lemma list_rel_empty:
       
   181   shows "list_rel R [] b \<Longrightarrow> length b = 0"
       
   182   by (induct b) (simp_all)
       
   183 
       
   184 lemma list_rel_len:
       
   185   shows "list_rel R a b \<Longrightarrow> length a = length b"
       
   186   apply (induct a arbitrary: b)
       
   187   apply (simp add: list_rel_empty)
       
   188   apply (case_tac b)
       
   189   apply simp_all
       
   190   done
       
   191 
       
   192 (* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *)
       
   193 lemma foldl_rsp[quot_respect]:
       
   194   assumes q1: "Quotient R1 Abs1 Rep1"
       
   195   and     q2: "Quotient R2 Abs2 Rep2"
       
   196   shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl"
       
   197   apply(auto)
       
   198   apply (subgoal_tac "R1 xa ya \<longrightarrow> list_rel R2 xb yb \<longrightarrow> R1 (foldl x xa xb) (foldl y ya yb)")
       
   199   apply simp
       
   200   apply (rule_tac x="xa" in spec)
       
   201   apply (rule_tac x="ya" in spec)
       
   202   apply (rule_tac xs="xb" and ys="yb" in list_induct2)
       
   203   apply (rule list_rel_len)
       
   204   apply (simp_all)
       
   205   done
       
   206 
       
   207 lemma foldr_rsp[quot_respect]:
       
   208   assumes q1: "Quotient R1 Abs1 Rep1"
       
   209   and     q2: "Quotient R2 Abs2 Rep2"
       
   210   shows "((R1 ===> R2 ===> R2) ===> list_rel R1 ===> R2 ===> R2) foldr foldr"
       
   211   apply auto
       
   212   apply(subgoal_tac "R2 xb yb \<longrightarrow> list_rel R1 xa ya \<longrightarrow> R2 (foldr x xa xb) (foldr y ya yb)")
       
   213   apply simp
       
   214   apply (rule_tac xs="xa" and ys="ya" in list_induct2)
       
   215   apply (rule list_rel_len)
       
   216   apply (simp_all)
       
   217   done
       
   218 
       
   219 lemma list_rel_eq[id_simps]:
       
   220   shows "(list_rel (op =)) = (op =)"
       
   221   unfolding expand_fun_eq
       
   222   apply(rule allI)+
       
   223   apply(induct_tac x xa rule: list_induct2')
       
   224   apply(simp_all)
       
   225   done
       
   226 
       
   227 lemma list_rel_refl:
       
   228   assumes a: "\<And>x y. R x y = (R x = R y)"
       
   229   shows "list_rel R x x"
       
   230   by (induct x) (auto simp add: a)
       
   231 
       
   232 end