1 (* Title: Quotient.thy |
|
2 Author: Cezary Kaliszyk and Christian Urban |
|
3 *) |
|
4 |
|
5 theory Quotient |
|
6 imports Plain ATP_Linkup |
|
7 uses |
|
8 ("quotient_info.ML") |
|
9 ("quotient_typ.ML") |
|
10 ("quotient_def.ML") |
|
11 ("quotient_term.ML") |
|
12 ("quotient_tacs.ML") |
|
13 begin |
|
14 |
|
15 |
|
16 text {* |
|
17 Basic definition for equivalence relations |
|
18 that are represented by predicates. |
|
19 *} |
|
20 |
|
21 definition |
|
22 "equivp E \<equiv> \<forall>x y. E x y = (E x = E y)" |
|
23 |
|
24 definition |
|
25 "reflp E \<equiv> \<forall>x. E x x" |
|
26 |
|
27 definition |
|
28 "symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x" |
|
29 |
|
30 definition |
|
31 "transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z" |
|
32 |
|
33 lemma equivp_reflp_symp_transp: |
|
34 shows "equivp E = (reflp E \<and> symp E \<and> transp E)" |
|
35 unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq |
|
36 by blast |
|
37 |
|
38 lemma equivp_reflp: |
|
39 shows "equivp E \<Longrightarrow> E x x" |
|
40 by (simp only: equivp_reflp_symp_transp reflp_def) |
|
41 |
|
42 lemma equivp_symp: |
|
43 shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y x" |
|
44 by (metis equivp_reflp_symp_transp symp_def) |
|
45 |
|
46 lemma equivp_transp: |
|
47 shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y z \<Longrightarrow> E x z" |
|
48 by (metis equivp_reflp_symp_transp transp_def) |
|
49 |
|
50 lemma equivpI: |
|
51 assumes "reflp R" "symp R" "transp R" |
|
52 shows "equivp R" |
|
53 using assms by (simp add: equivp_reflp_symp_transp) |
|
54 |
|
55 lemma identity_equivp: |
|
56 shows "equivp (op =)" |
|
57 unfolding equivp_def |
|
58 by auto |
|
59 |
|
60 text {* Partial equivalences: not yet used anywhere *} |
|
61 |
|
62 definition |
|
63 "part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))" |
|
64 |
|
65 lemma equivp_implies_part_equivp: |
|
66 assumes a: "equivp E" |
|
67 shows "part_equivp E" |
|
68 using a |
|
69 unfolding equivp_def part_equivp_def |
|
70 by auto |
|
71 |
|
72 text {* Composition of Relations *} |
|
73 |
|
74 abbreviation |
|
75 rel_conj (infixr "OOO" 75) |
|
76 where |
|
77 "r1 OOO r2 \<equiv> r1 OO r2 OO r1" |
|
78 |
|
79 lemma eq_comp_r: |
|
80 shows "((op =) OOO R) = R" |
|
81 by (auto simp add: expand_fun_eq) |
|
82 |
|
83 section {* Respects predicate *} |
|
84 |
|
85 definition |
|
86 Respects |
|
87 where |
|
88 "Respects R x \<equiv> R x x" |
|
89 |
|
90 lemma in_respects: |
|
91 shows "(x \<in> Respects R) = R x x" |
|
92 unfolding mem_def Respects_def |
|
93 by simp |
|
94 |
|
95 section {* Function map and function relation *} |
|
96 |
|
97 definition |
|
98 fun_map (infixr "--->" 55) |
|
99 where |
|
100 [simp]: "fun_map f g h x = g (h (f x))" |
|
101 |
|
102 definition |
|
103 fun_rel (infixr "===>" 55) |
|
104 where |
|
105 [simp]: "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))" |
|
106 |
|
107 |
|
108 lemma fun_map_id: |
|
109 shows "(id ---> id) = id" |
|
110 by (simp add: expand_fun_eq id_def) |
|
111 |
|
112 lemma fun_rel_eq: |
|
113 shows "((op =) ===> (op =)) = (op =)" |
|
114 by (simp add: expand_fun_eq) |
|
115 |
|
116 lemma fun_rel_id: |
|
117 assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)" |
|
118 shows "(R1 ===> R2) f g" |
|
119 using a by simp |
|
120 |
|
121 lemma fun_rel_id_asm: |
|
122 assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))" |
|
123 shows "A \<longrightarrow> (R1 ===> R2) f g" |
|
124 using a by auto |
|
125 |
|
126 |
|
127 section {* Quotient Predicate *} |
|
128 |
|
129 definition |
|
130 "Quotient E Abs Rep \<equiv> |
|
131 (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. E (Rep a) (Rep a)) \<and> |
|
132 (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))" |
|
133 |
|
134 lemma Quotient_abs_rep: |
|
135 assumes a: "Quotient E Abs Rep" |
|
136 shows "Abs (Rep a) = a" |
|
137 using a |
|
138 unfolding Quotient_def |
|
139 by simp |
|
140 |
|
141 lemma Quotient_rep_reflp: |
|
142 assumes a: "Quotient E Abs Rep" |
|
143 shows "E (Rep a) (Rep a)" |
|
144 using a |
|
145 unfolding Quotient_def |
|
146 by blast |
|
147 |
|
148 lemma Quotient_rel: |
|
149 assumes a: "Quotient E Abs Rep" |
|
150 shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))" |
|
151 using a |
|
152 unfolding Quotient_def |
|
153 by blast |
|
154 |
|
155 lemma Quotient_rel_rep: |
|
156 assumes a: "Quotient R Abs Rep" |
|
157 shows "R (Rep a) (Rep b) = (a = b)" |
|
158 using a |
|
159 unfolding Quotient_def |
|
160 by metis |
|
161 |
|
162 lemma Quotient_rep_abs: |
|
163 assumes a: "Quotient R Abs Rep" |
|
164 shows "R r r \<Longrightarrow> R (Rep (Abs r)) r" |
|
165 using a unfolding Quotient_def |
|
166 by blast |
|
167 |
|
168 lemma Quotient_rel_abs: |
|
169 assumes a: "Quotient E Abs Rep" |
|
170 shows "E r s \<Longrightarrow> Abs r = Abs s" |
|
171 using a unfolding Quotient_def |
|
172 by blast |
|
173 |
|
174 lemma Quotient_symp: |
|
175 assumes a: "Quotient E Abs Rep" |
|
176 shows "symp E" |
|
177 using a unfolding Quotient_def symp_def |
|
178 by metis |
|
179 |
|
180 lemma Quotient_transp: |
|
181 assumes a: "Quotient E Abs Rep" |
|
182 shows "transp E" |
|
183 using a unfolding Quotient_def transp_def |
|
184 by metis |
|
185 |
|
186 lemma identity_quotient: |
|
187 shows "Quotient (op =) id id" |
|
188 unfolding Quotient_def id_def |
|
189 by blast |
|
190 |
|
191 lemma fun_quotient: |
|
192 assumes q1: "Quotient R1 abs1 rep1" |
|
193 and q2: "Quotient R2 abs2 rep2" |
|
194 shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" |
|
195 proof - |
|
196 have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a" |
|
197 using q1 q2 |
|
198 unfolding Quotient_def |
|
199 unfolding expand_fun_eq |
|
200 by simp |
|
201 moreover |
|
202 have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)" |
|
203 using q1 q2 |
|
204 unfolding Quotient_def |
|
205 by (simp (no_asm)) (metis) |
|
206 moreover |
|
207 have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> |
|
208 (rep1 ---> abs2) r = (rep1 ---> abs2) s)" |
|
209 unfolding expand_fun_eq |
|
210 apply(auto) |
|
211 using q1 q2 unfolding Quotient_def |
|
212 apply(metis) |
|
213 using q1 q2 unfolding Quotient_def |
|
214 apply(metis) |
|
215 using q1 q2 unfolding Quotient_def |
|
216 apply(metis) |
|
217 using q1 q2 unfolding Quotient_def |
|
218 apply(metis) |
|
219 done |
|
220 ultimately |
|
221 show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" |
|
222 unfolding Quotient_def by blast |
|
223 qed |
|
224 |
|
225 lemma abs_o_rep: |
|
226 assumes a: "Quotient R Abs Rep" |
|
227 shows "Abs o Rep = id" |
|
228 unfolding expand_fun_eq |
|
229 by (simp add: Quotient_abs_rep[OF a]) |
|
230 |
|
231 lemma equals_rsp: |
|
232 assumes q: "Quotient R Abs Rep" |
|
233 and a: "R xa xb" "R ya yb" |
|
234 shows "R xa ya = R xb yb" |
|
235 using a Quotient_symp[OF q] Quotient_transp[OF q] |
|
236 unfolding symp_def transp_def |
|
237 by blast |
|
238 |
|
239 lemma lambda_prs: |
|
240 assumes q1: "Quotient R1 Abs1 Rep1" |
|
241 and q2: "Quotient R2 Abs2 Rep2" |
|
242 shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)" |
|
243 unfolding expand_fun_eq |
|
244 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] |
|
245 by simp |
|
246 |
|
247 lemma lambda_prs1: |
|
248 assumes q1: "Quotient R1 Abs1 Rep1" |
|
249 and q2: "Quotient R2 Abs2 Rep2" |
|
250 shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)" |
|
251 unfolding expand_fun_eq |
|
252 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] |
|
253 by simp |
|
254 |
|
255 lemma rep_abs_rsp: |
|
256 assumes q: "Quotient R Abs Rep" |
|
257 and a: "R x1 x2" |
|
258 shows "R x1 (Rep (Abs x2))" |
|
259 using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q] |
|
260 by metis |
|
261 |
|
262 lemma rep_abs_rsp_left: |
|
263 assumes q: "Quotient R Abs Rep" |
|
264 and a: "R x1 x2" |
|
265 shows "R (Rep (Abs x1)) x2" |
|
266 using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q] |
|
267 by metis |
|
268 |
|
269 text{* |
|
270 In the following theorem R1 can be instantiated with anything, |
|
271 but we know some of the types of the Rep and Abs functions; |
|
272 so by solving Quotient assumptions we can get a unique R1 that |
|
273 will be provable; which is why we need to use apply_rsp and |
|
274 not the primed version *} |
|
275 |
|
276 lemma apply_rsp: |
|
277 fixes f g::"'a \<Rightarrow> 'c" |
|
278 assumes q: "Quotient R1 Abs1 Rep1" |
|
279 and a: "(R1 ===> R2) f g" "R1 x y" |
|
280 shows "R2 (f x) (g y)" |
|
281 using a by simp |
|
282 |
|
283 lemma apply_rsp': |
|
284 assumes a: "(R1 ===> R2) f g" "R1 x y" |
|
285 shows "R2 (f x) (g y)" |
|
286 using a by simp |
|
287 |
|
288 section {* lemmas for regularisation of ball and bex *} |
|
289 |
|
290 lemma ball_reg_eqv: |
|
291 fixes P :: "'a \<Rightarrow> bool" |
|
292 assumes a: "equivp R" |
|
293 shows "Ball (Respects R) P = (All P)" |
|
294 using a |
|
295 unfolding equivp_def |
|
296 by (auto simp add: in_respects) |
|
297 |
|
298 lemma bex_reg_eqv: |
|
299 fixes P :: "'a \<Rightarrow> bool" |
|
300 assumes a: "equivp R" |
|
301 shows "Bex (Respects R) P = (Ex P)" |
|
302 using a |
|
303 unfolding equivp_def |
|
304 by (auto simp add: in_respects) |
|
305 |
|
306 lemma ball_reg_right: |
|
307 assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x" |
|
308 shows "All P \<longrightarrow> Ball R Q" |
|
309 using a by (metis COMBC_def Collect_def Collect_mem_eq) |
|
310 |
|
311 lemma bex_reg_left: |
|
312 assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x" |
|
313 shows "Bex R Q \<longrightarrow> Ex P" |
|
314 using a by (metis COMBC_def Collect_def Collect_mem_eq) |
|
315 |
|
316 lemma ball_reg_left: |
|
317 assumes a: "equivp R" |
|
318 shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P" |
|
319 using a by (metis equivp_reflp in_respects) |
|
320 |
|
321 lemma bex_reg_right: |
|
322 assumes a: "equivp R" |
|
323 shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P" |
|
324 using a by (metis equivp_reflp in_respects) |
|
325 |
|
326 lemma ball_reg_eqv_range: |
|
327 fixes P::"'a \<Rightarrow> bool" |
|
328 and x::"'a" |
|
329 assumes a: "equivp R2" |
|
330 shows "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))" |
|
331 apply(rule iffI) |
|
332 apply(rule allI) |
|
333 apply(drule_tac x="\<lambda>y. f x" in bspec) |
|
334 apply(simp add: in_respects) |
|
335 apply(rule impI) |
|
336 using a equivp_reflp_symp_transp[of "R2"] |
|
337 apply(simp add: reflp_def) |
|
338 apply(simp) |
|
339 apply(simp) |
|
340 done |
|
341 |
|
342 lemma bex_reg_eqv_range: |
|
343 assumes a: "equivp R2" |
|
344 shows "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))" |
|
345 apply(auto) |
|
346 apply(rule_tac x="\<lambda>y. f x" in bexI) |
|
347 apply(simp) |
|
348 apply(simp add: Respects_def in_respects) |
|
349 apply(rule impI) |
|
350 using a equivp_reflp_symp_transp[of "R2"] |
|
351 apply(simp add: reflp_def) |
|
352 done |
|
353 |
|
354 (* Next four lemmas are unused *) |
|
355 lemma all_reg: |
|
356 assumes a: "!x :: 'a. (P x --> Q x)" |
|
357 and b: "All P" |
|
358 shows "All Q" |
|
359 using a b by (metis) |
|
360 |
|
361 lemma ex_reg: |
|
362 assumes a: "!x :: 'a. (P x --> Q x)" |
|
363 and b: "Ex P" |
|
364 shows "Ex Q" |
|
365 using a b by metis |
|
366 |
|
367 lemma ball_reg: |
|
368 assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
|
369 and b: "Ball R P" |
|
370 shows "Ball R Q" |
|
371 using a b by (metis COMBC_def Collect_def Collect_mem_eq) |
|
372 |
|
373 lemma bex_reg: |
|
374 assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
|
375 and b: "Bex R P" |
|
376 shows "Bex R Q" |
|
377 using a b by (metis COMBC_def Collect_def Collect_mem_eq) |
|
378 |
|
379 |
|
380 lemma ball_all_comm: |
|
381 assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)" |
|
382 shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)" |
|
383 using assms by auto |
|
384 |
|
385 lemma bex_ex_comm: |
|
386 assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)" |
|
387 shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)" |
|
388 using assms by auto |
|
389 |
|
390 section {* Bounded abstraction *} |
|
391 |
|
392 definition |
|
393 Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" |
|
394 where |
|
395 "x \<in> p \<Longrightarrow> Babs p m x = m x" |
|
396 |
|
397 lemma babs_rsp: |
|
398 assumes q: "Quotient R1 Abs1 Rep1" |
|
399 and a: "(R1 ===> R2) f g" |
|
400 shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)" |
|
401 apply (auto simp add: Babs_def in_respects) |
|
402 apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1") |
|
403 using a apply (simp add: Babs_def) |
|
404 apply (simp add: in_respects) |
|
405 using Quotient_rel[OF q] |
|
406 by metis |
|
407 |
|
408 lemma babs_prs: |
|
409 assumes q1: "Quotient R1 Abs1 Rep1" |
|
410 and q2: "Quotient R2 Abs2 Rep2" |
|
411 shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f" |
|
412 apply (rule ext) |
|
413 apply (simp) |
|
414 apply (subgoal_tac "Rep1 x \<in> Respects R1") |
|
415 apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) |
|
416 apply (simp add: in_respects Quotient_rel_rep[OF q1]) |
|
417 done |
|
418 |
|
419 lemma babs_simp: |
|
420 assumes q: "Quotient R1 Abs Rep" |
|
421 shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)" |
|
422 apply(rule iffI) |
|
423 apply(simp_all only: babs_rsp[OF q]) |
|
424 apply(auto simp add: Babs_def) |
|
425 apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1") |
|
426 apply(metis Babs_def) |
|
427 apply (simp add: in_respects) |
|
428 using Quotient_rel[OF q] |
|
429 by metis |
|
430 |
|
431 (* If a user proves that a particular functional relation |
|
432 is an equivalence this may be useful in regularising *) |
|
433 lemma babs_reg_eqv: |
|
434 shows "equivp R \<Longrightarrow> Babs (Respects R) P = P" |
|
435 by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp) |
|
436 |
|
437 |
|
438 (* 3 lemmas needed for proving repabs_inj *) |
|
439 lemma ball_rsp: |
|
440 assumes a: "(R ===> (op =)) f g" |
|
441 shows "Ball (Respects R) f = Ball (Respects R) g" |
|
442 using a by (simp add: Ball_def in_respects) |
|
443 |
|
444 lemma bex_rsp: |
|
445 assumes a: "(R ===> (op =)) f g" |
|
446 shows "(Bex (Respects R) f = Bex (Respects R) g)" |
|
447 using a by (simp add: Bex_def in_respects) |
|
448 |
|
449 lemma bex1_rsp: |
|
450 assumes a: "(R ===> (op =)) f g" |
|
451 shows "Ex1 (\<lambda>x. x \<in> Respects R \<and> f x) = Ex1 (\<lambda>x. x \<in> Respects R \<and> g x)" |
|
452 using a |
|
453 by (simp add: Ex1_def in_respects) auto |
|
454 |
|
455 (* 2 lemmas needed for cleaning of quantifiers *) |
|
456 lemma all_prs: |
|
457 assumes a: "Quotient R absf repf" |
|
458 shows "Ball (Respects R) ((absf ---> id) f) = All f" |
|
459 using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply |
|
460 by metis |
|
461 |
|
462 lemma ex_prs: |
|
463 assumes a: "Quotient R absf repf" |
|
464 shows "Bex (Respects R) ((absf ---> id) f) = Ex f" |
|
465 using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply |
|
466 by metis |
|
467 |
|
468 section {* Bex1_rel quantifier *} |
|
469 |
|
470 definition |
|
471 Bex1_rel :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" |
|
472 where |
|
473 "Bex1_rel R P \<longleftrightarrow> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))" |
|
474 |
|
475 lemma bex1_rel_aux: |
|
476 "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R x\<rbrakk> \<Longrightarrow> Bex1_rel R y" |
|
477 unfolding Bex1_rel_def |
|
478 apply (erule conjE)+ |
|
479 apply (erule bexE) |
|
480 apply rule |
|
481 apply (rule_tac x="xa" in bexI) |
|
482 apply metis |
|
483 apply metis |
|
484 apply rule+ |
|
485 apply (erule_tac x="xaa" in ballE) |
|
486 prefer 2 |
|
487 apply (metis) |
|
488 apply (erule_tac x="ya" in ballE) |
|
489 prefer 2 |
|
490 apply (metis) |
|
491 apply (metis in_respects) |
|
492 done |
|
493 |
|
494 lemma bex1_rel_aux2: |
|
495 "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R y\<rbrakk> \<Longrightarrow> Bex1_rel R x" |
|
496 unfolding Bex1_rel_def |
|
497 apply (erule conjE)+ |
|
498 apply (erule bexE) |
|
499 apply rule |
|
500 apply (rule_tac x="xa" in bexI) |
|
501 apply metis |
|
502 apply metis |
|
503 apply rule+ |
|
504 apply (erule_tac x="xaa" in ballE) |
|
505 prefer 2 |
|
506 apply (metis) |
|
507 apply (erule_tac x="ya" in ballE) |
|
508 prefer 2 |
|
509 apply (metis) |
|
510 apply (metis in_respects) |
|
511 done |
|
512 |
|
513 lemma bex1_rel_rsp: |
|
514 assumes a: "Quotient R absf repf" |
|
515 shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)" |
|
516 apply simp |
|
517 apply clarify |
|
518 apply rule |
|
519 apply (simp_all add: bex1_rel_aux bex1_rel_aux2) |
|
520 apply (erule bex1_rel_aux2) |
|
521 apply assumption |
|
522 done |
|
523 |
|
524 |
|
525 lemma ex1_prs: |
|
526 assumes a: "Quotient R absf repf" |
|
527 shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f" |
|
528 apply simp |
|
529 apply (subst Bex1_rel_def) |
|
530 apply (subst Bex_def) |
|
531 apply (subst Ex1_def) |
|
532 apply simp |
|
533 apply rule |
|
534 apply (erule conjE)+ |
|
535 apply (erule_tac exE) |
|
536 apply (erule conjE) |
|
537 apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y") |
|
538 apply (rule_tac x="absf x" in exI) |
|
539 apply (simp) |
|
540 apply rule+ |
|
541 using a unfolding Quotient_def |
|
542 apply metis |
|
543 apply rule+ |
|
544 apply (erule_tac x="x" in ballE) |
|
545 apply (erule_tac x="y" in ballE) |
|
546 apply simp |
|
547 apply (simp add: in_respects) |
|
548 apply (simp add: in_respects) |
|
549 apply (erule_tac exE) |
|
550 apply rule |
|
551 apply (rule_tac x="repf x" in exI) |
|
552 apply (simp only: in_respects) |
|
553 apply rule |
|
554 apply (metis Quotient_rel_rep[OF a]) |
|
555 using a unfolding Quotient_def apply (simp) |
|
556 apply rule+ |
|
557 using a unfolding Quotient_def in_respects |
|
558 apply metis |
|
559 done |
|
560 |
|
561 lemma bex1_bexeq_reg: "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))" |
|
562 apply (simp add: Ex1_def Bex1_rel_def in_respects) |
|
563 apply clarify |
|
564 apply auto |
|
565 apply (rule bexI) |
|
566 apply assumption |
|
567 apply (simp add: in_respects) |
|
568 apply (simp add: in_respects) |
|
569 apply auto |
|
570 done |
|
571 |
|
572 section {* Various respects and preserve lemmas *} |
|
573 |
|
574 lemma quot_rel_rsp: |
|
575 assumes a: "Quotient R Abs Rep" |
|
576 shows "(R ===> R ===> op =) R R" |
|
577 apply(rule fun_rel_id)+ |
|
578 apply(rule equals_rsp[OF a]) |
|
579 apply(assumption)+ |
|
580 done |
|
581 |
|
582 lemma o_prs: |
|
583 assumes q1: "Quotient R1 Abs1 Rep1" |
|
584 and q2: "Quotient R2 Abs2 Rep2" |
|
585 and q3: "Quotient R3 Abs3 Rep3" |
|
586 shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g" |
|
587 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3] |
|
588 unfolding o_def expand_fun_eq by simp |
|
589 |
|
590 lemma o_rsp: |
|
591 assumes q1: "Quotient R1 Abs1 Rep1" |
|
592 and q2: "Quotient R2 Abs2 Rep2" |
|
593 and q3: "Quotient R3 Abs3 Rep3" |
|
594 and a1: "(R2 ===> R3) f1 f2" |
|
595 and a2: "(R1 ===> R2) g1 g2" |
|
596 shows "(R1 ===> R3) (f1 o g1) (f2 o g2)" |
|
597 using a1 a2 unfolding o_def expand_fun_eq |
|
598 by (auto) |
|
599 |
|
600 lemma cond_prs: |
|
601 assumes a: "Quotient R absf repf" |
|
602 shows "absf (if a then repf b else repf c) = (if a then b else c)" |
|
603 using a unfolding Quotient_def by auto |
|
604 |
|
605 lemma if_prs: |
|
606 assumes q: "Quotient R Abs Rep" |
|
607 shows "Abs (If a (Rep b) (Rep c)) = If a b c" |
|
608 using Quotient_abs_rep[OF q] by auto |
|
609 |
|
610 (* q not used *) |
|
611 lemma if_rsp: |
|
612 assumes q: "Quotient R Abs Rep" |
|
613 and a: "a1 = a2" "R b1 b2" "R c1 c2" |
|
614 shows "R (If a1 b1 c1) (If a2 b2 c2)" |
|
615 using a by auto |
|
616 |
|
617 lemma let_prs: |
|
618 assumes q1: "Quotient R1 Abs1 Rep1" |
|
619 and q2: "Quotient R2 Abs2 Rep2" |
|
620 shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f" |
|
621 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto |
|
622 |
|
623 lemma let_rsp: |
|
624 assumes q1: "Quotient R1 Abs1 Rep1" |
|
625 and a1: "(R1 ===> R2) f g" |
|
626 and a2: "R1 x y" |
|
627 shows "R2 ((Let x f)::'c) ((Let y g)::'c)" |
|
628 using apply_rsp[OF q1 a1] a2 by auto |
|
629 |
|
630 locale quot_type = |
|
631 fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool" |
|
632 and Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b" |
|
633 and Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)" |
|
634 assumes equivp: "equivp R" |
|
635 and rep_prop: "\<And>y. \<exists>x. Rep y = R x" |
|
636 and rep_inverse: "\<And>x. Abs (Rep x) = x" |
|
637 and abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)" |
|
638 and rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)" |
|
639 begin |
|
640 |
|
641 definition |
|
642 abs::"'a \<Rightarrow> 'b" |
|
643 where |
|
644 "abs x \<equiv> Abs (R x)" |
|
645 |
|
646 definition |
|
647 rep::"'b \<Rightarrow> 'a" |
|
648 where |
|
649 "rep a = Eps (Rep a)" |
|
650 |
|
651 lemma homeier_lem9: |
|
652 shows "R (Eps (R x)) = R x" |
|
653 proof - |
|
654 have a: "R x x" using equivp by (simp add: equivp_reflp_symp_transp reflp_def) |
|
655 then have "R x (Eps (R x))" by (rule someI) |
|
656 then show "R (Eps (R x)) = R x" |
|
657 using equivp unfolding equivp_def by simp |
|
658 qed |
|
659 |
|
660 theorem homeier_thm10: |
|
661 shows "abs (rep a) = a" |
|
662 unfolding abs_def rep_def |
|
663 proof - |
|
664 from rep_prop |
|
665 obtain x where eq: "Rep a = R x" by auto |
|
666 have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp |
|
667 also have "\<dots> = Abs (R x)" using homeier_lem9 by simp |
|
668 also have "\<dots> = Abs (Rep a)" using eq by simp |
|
669 also have "\<dots> = a" using rep_inverse by simp |
|
670 finally |
|
671 show "Abs (R (Eps (Rep a))) = a" by simp |
|
672 qed |
|
673 |
|
674 lemma homeier_lem7: |
|
675 shows "(R x = R y) = (Abs (R x) = Abs (R y))" (is "?LHS = ?RHS") |
|
676 proof - |
|
677 have "?RHS = (Rep (Abs (R x)) = Rep (Abs (R y)))" by (simp add: rep_inject) |
|
678 also have "\<dots> = ?LHS" by (simp add: abs_inverse) |
|
679 finally show "?LHS = ?RHS" by simp |
|
680 qed |
|
681 |
|
682 theorem homeier_thm11: |
|
683 shows "R r r' = (abs r = abs r')" |
|
684 unfolding abs_def |
|
685 by (simp only: equivp[simplified equivp_def] homeier_lem7) |
|
686 |
|
687 lemma rep_refl: |
|
688 shows "R (rep a) (rep a)" |
|
689 unfolding rep_def |
|
690 by (simp add: equivp[simplified equivp_def]) |
|
691 |
|
692 |
|
693 lemma rep_abs_rsp: |
|
694 shows "R f (rep (abs g)) = R f g" |
|
695 and "R (rep (abs g)) f = R g f" |
|
696 by (simp_all add: homeier_thm10 homeier_thm11) |
|
697 |
|
698 lemma Quotient: |
|
699 shows "Quotient R abs rep" |
|
700 unfolding Quotient_def |
|
701 apply(simp add: homeier_thm10) |
|
702 apply(simp add: rep_refl) |
|
703 apply(subst homeier_thm11[symmetric]) |
|
704 apply(simp add: equivp[simplified equivp_def]) |
|
705 done |
|
706 |
|
707 end |
|
708 |
|
709 section {* ML setup *} |
|
710 |
|
711 text {* Auxiliary data for the quotient package *} |
|
712 |
|
713 use "quotient_info.ML" |
|
714 |
|
715 declare [[map "fun" = (fun_map, fun_rel)]] |
|
716 |
|
717 lemmas [quot_thm] = fun_quotient |
|
718 lemmas [quot_respect] = quot_rel_rsp |
|
719 lemmas [quot_equiv] = identity_equivp |
|
720 |
|
721 |
|
722 text {* Lemmas about simplifying id's. *} |
|
723 lemmas [id_simps] = |
|
724 id_def[symmetric] |
|
725 fun_map_id |
|
726 id_apply |
|
727 id_o |
|
728 o_id |
|
729 eq_comp_r |
|
730 |
|
731 text {* Translation functions for the lifting process. *} |
|
732 use "quotient_term.ML" |
|
733 |
|
734 |
|
735 text {* Definitions of the quotient types. *} |
|
736 use "quotient_typ.ML" |
|
737 |
|
738 |
|
739 text {* Definitions for quotient constants. *} |
|
740 use "quotient_def.ML" |
|
741 |
|
742 |
|
743 text {* |
|
744 An auxiliary constant for recording some information |
|
745 about the lifted theorem in a tactic. |
|
746 *} |
|
747 definition |
|
748 "Quot_True x \<equiv> True" |
|
749 |
|
750 lemma |
|
751 shows QT_all: "Quot_True (All P) \<Longrightarrow> Quot_True P" |
|
752 and QT_ex: "Quot_True (Ex P) \<Longrightarrow> Quot_True P" |
|
753 and QT_ex1: "Quot_True (Ex1 P) \<Longrightarrow> Quot_True P" |
|
754 and QT_lam: "Quot_True (\<lambda>x. P x) \<Longrightarrow> (\<And>x. Quot_True (P x))" |
|
755 and QT_ext: "(\<And>x. Quot_True (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (Quot_True a \<Longrightarrow> f = g)" |
|
756 by (simp_all add: Quot_True_def ext) |
|
757 |
|
758 lemma QT_imp: "Quot_True a \<equiv> Quot_True b" |
|
759 by (simp add: Quot_True_def) |
|
760 |
|
761 |
|
762 text {* Tactics for proving the lifted theorems *} |
|
763 use "quotient_tacs.ML" |
|
764 |
|
765 section {* Methods / Interface *} |
|
766 |
|
767 method_setup lifting = |
|
768 {* Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.lift_tac ctxt thms))) *} |
|
769 {* lifts theorems to quotient types *} |
|
770 |
|
771 method_setup lifting_setup = |
|
772 {* Attrib.thm >> (fn thms => fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.procedure_tac ctxt thms))) *} |
|
773 {* sets up the three goals for the quotient lifting procedure *} |
|
774 |
|
775 method_setup regularize = |
|
776 {* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.regularize_tac ctxt))) *} |
|
777 {* proves the regularization goals from the quotient lifting procedure *} |
|
778 |
|
779 method_setup injection = |
|
780 {* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.all_injection_tac ctxt))) *} |
|
781 {* proves the rep/abs injection goals from the quotient lifting procedure *} |
|
782 |
|
783 method_setup cleaning = |
|
784 {* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.clean_tac ctxt))) *} |
|
785 {* proves the cleaning goals from the quotient lifting procedure *} |
|
786 |
|
787 attribute_setup quot_lifted = |
|
788 {* Scan.succeed Quotient_Tacs.lifted_attrib *} |
|
789 {* lifts theorems to quotient types *} |
|
790 |
|
791 no_notation |
|
792 rel_conj (infixr "OOO" 75) and |
|
793 fun_map (infixr "--->" 55) and |
|
794 fun_rel (infixr "===>" 55) |
|
795 |
|
796 end |
|
797 |
|