|
1 theory Lift |
|
2 imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv" "Rsp" |
|
3 begin |
|
4 |
|
5 atom_decl name |
|
6 atom_decl ident |
|
7 |
|
8 datatype rtrm2 = |
|
9 rVr2 "name" |
|
10 | rAp2 "rtrm2" "rtrm2" |
|
11 | rLt2 "ras" "rtrm2" --"bind (bv2 l) in (r)" |
|
12 and ras = |
|
13 rAs "name" "rtrm2" |
|
14 |
|
15 primrec rbv2 where "rbv2 (rAs x t) = {atom x}" |
|
16 |
|
17 |
|
18 ML {* |
|
19 fun build_eqvts_ funs perms simps induct ctxt = |
|
20 let |
|
21 val pi = Free ("pi", @{typ perm}); |
|
22 val types = map (domain_type o fastype_of) funs; |
|
23 val fv_indnames = Datatype_Prop.make_tnames (map body_type types); |
|
24 val args = map Free (fv_indnames ~~ types); |
|
25 val perm_at = Const (@{const_name permute}, @{typ "perm \<Rightarrow> atom set \<Rightarrow> atom set"}) |
|
26 fun eqvtc (fv, (arg, perm)) = |
|
27 HOLogic.mk_eq ((perm_at $ pi $ (fv $ arg)), (fv $ (perm $ pi $ arg))) |
|
28 val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (map eqvtc (funs ~~ (args ~~ perms)))) |
|
29 fun tac _ = (indtac induct fv_indnames THEN_ALL_NEW |
|
30 (asm_full_simp_tac (HOL_ss addsimps |
|
31 (@{thm atom_eqvt} :: (Nominal_ThmDecls.get_eqvts_thms ctxt) @ simps)))) 1 |
|
32 in |
|
33 Goal.prove ctxt ("pi" :: fv_indnames) [] gl tac |
|
34 end |
|
35 *} |
|
36 |
|
37 |
|
38 ML {* |
|
39 print_depth 500; |
|
40 val thy1 = @{theory}; |
|
41 val tnames = ["rtrm2", "ras"]; |
|
42 val ftname = "Lift.rtrm2" |
|
43 val binds = [[[[]], [[], []], [[], [(SOME @{term rbv2}, 0)]]], |
|
44 [[[], []]] (*, [[], [[], []]] *) ]; |
|
45 val bv_simps = @{thms rbv2.simps} |
|
46 val info = Datatype.the_info @{theory} ftname; |
|
47 val descr = #descr info; |
|
48 val all_full_tnames = map (fn (_, (n, _, _)) => n) descr; |
|
49 val full_tnames = List.take (all_full_tnames, length tnames); |
|
50 val induct = #induct info; |
|
51 val inducts = #inducts info; |
|
52 val infos = map (Datatype.the_info @{theory}) all_full_tnames; |
|
53 val inject = flat (map #inject infos); |
|
54 val distinct = flat (map #distinct infos); |
|
55 val ((raw_perm_def, raw_perm_simps, perms), thy2) = define_raw_perms tnames full_tnames thy1; |
|
56 val lthy1 = Theory_Target.init NONE thy2 |
|
57 val (((fv_ts_loc, fv_def_loc), alpha), lthy2) = define_fv_alpha ftname binds lthy1; |
|
58 val alpha_ts = #preds alpha |
|
59 val alpha_intros = #intrs alpha |
|
60 val alpha_cases = #elims alpha |
|
61 val alpha_induct = #induct alpha |
|
62 val alpha_inj = build_alpha_inj alpha_intros (inject @ distinct) alpha_cases lthy2 |
|
63 val fv_def = ProofContext.export lthy2 lthy1 fv_def_loc |
|
64 val morphism = ProofContext.export_morphism lthy2 lthy1 |
|
65 val fv_ts = map (Morphism.term morphism) fv_ts_loc |
|
66 val (bv_eqvts, lthy3) = build_eqvts @{binding bv_eqvts} [@{term rbv2}] [hd (tl perms)] |
|
67 (bv_simps @ raw_perm_def) @{thm rtrm2_ras.inducts(2)} lthy2; |
|
68 val (fv_eqvts, lthy4) = build_eqvts @{binding fv_eqvts} fv_ts_loc perms (fv_def_loc @ raw_perm_def) induct lthy3; |
|
69 val alpha_eqvt = build_alpha_eqvts alpha_ts perms (raw_perm_def @ alpha_inj) alpha_induct lthy4; |
|
70 val alpha_equivp = build_equivps alpha_ts induct alpha_induct inject alpha_inj distinct alpha_cases alpha_eqvt lthy4 |
|
71 |
|
72 *} |
|
73 |
|
74 |
|
75 |
|
76 ML {* |
|
77 val thyf = Local_Theory.exit_global lthy4 |
|
78 *} |
|
79 setup {* fn _ => thyf *} |
|
80 print_theorems |
|
81 |
|
82 ML {* |
|
83 (*val thyn = @{theory} |
|
84 val lthy3 = Theory_Target.init NONE thyn;*) |
|
85 build_equivps alpha_ts induct alpha_induct inject alpha_inj distinct alpha_cases @{thms alpha2_eqvt} lthy2 |
|
86 |
|
87 *} |
|
88 |
|
89 |