Nominal/Abs.thy
changeset 1657 d7dc35222afc
parent 1588 7cebb576fae3
child 1661 54becd55d83a
child 1664 aa999d263b10
equal deleted inserted replaced
1656:c9d3dda79fe3 1657:d7dc35222afc
    49   and   "R1 \<le> R2 \<Longrightarrow> alpha_res bs R1 \<le> alpha_res bs R2"
    49   and   "R1 \<le> R2 \<Longrightarrow> alpha_res bs R1 \<le> alpha_res bs R2"
    50   and   "R1 \<le> R2 \<Longrightarrow> alpha_lst cs R1 \<le> alpha_lst cs R2"
    50   and   "R1 \<le> R2 \<Longrightarrow> alpha_lst cs R1 \<le> alpha_lst cs R2"
    51   by (case_tac [!] bs, case_tac [!] cs) 
    51   by (case_tac [!] bs, case_tac [!] cs) 
    52      (auto simp add: le_fun_def le_bool_def alphas)
    52      (auto simp add: le_fun_def le_bool_def alphas)
    53 
    53 
    54 lemma alpha_gen_refl:
    54 fun
    55   assumes a: "R x x"
    55   alpha_abs 
    56   shows "(bs, x) \<approx>gen R f 0 (bs, x)"
    56 where
    57   and   "(bs, x) \<approx>res R f 0 (bs, x)"
    57   "alpha_abs (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op=) supp p (cs, y))"
    58   and   "(cs, x) \<approx>lst R f 0 (cs, x)"
    58 
    59   using a 
    59 fun
       
    60   alpha_abs_lst
       
    61 where
       
    62   "alpha_abs_lst (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>lst (op=) supp p (cs, y))"
       
    63 
       
    64 fun
       
    65   alpha_abs_res
       
    66 where
       
    67   "alpha_abs_res (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>res (op=) supp p (cs, y))"
       
    68 
       
    69 notation
       
    70   alpha_abs ("_ \<approx>abs _") and
       
    71   alpha_abs_lst ("_ \<approx>abs'_lst _") and
       
    72   alpha_abs_res ("_ \<approx>abs'_res _")
       
    73 
       
    74 lemmas alphas_abs = alpha_abs.simps alpha_abs_res.simps alpha_abs_lst.simps
       
    75 
       
    76 lemma alphas_abs_refl:
       
    77   shows "(bs, x) \<approx>abs (bs, x)"
       
    78   and   "(bs, x) \<approx>abs_res (bs, x)"
       
    79   and   "(cs, x) \<approx>abs_lst (cs, x)" 
       
    80   unfolding alphas_abs
    60   unfolding alphas
    81   unfolding alphas
    61   unfolding fresh_star_def
    82   unfolding fresh_star_def
    62   by (simp_all add: fresh_zero_perm)
    83   by (rule_tac [!] x="0" in exI)
    63 
    84      (simp_all add: fresh_zero_perm)
    64 lemma alpha_gen_sym:
    85 
    65   assumes a: "R (p \<bullet> x) y \<Longrightarrow> R (- p \<bullet> y) x"
    86 lemma alphas_abs_sym:
    66   shows "(bs, x) \<approx>gen R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>gen R f (- p) (bs, x)"
    87   shows "(bs, x) \<approx>abs (cs, y) \<Longrightarrow> (cs, y) \<approx>abs (bs, x)"
    67   and   "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)"
    88   and   "(bs, x) \<approx>abs_res (cs, y) \<Longrightarrow> (cs, y) \<approx>abs_res (bs, x)"
    68   and   "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
    89   and   "(ds, x) \<approx>abs_lst (es, y) \<Longrightarrow> (es, y) \<approx>abs_lst (ds, x)"
    69   using a
    90   unfolding alphas_abs
    70   unfolding alphas
    91   unfolding alphas
    71   unfolding fresh_star_def
    92   unfolding fresh_star_def
    72   by (auto simp add:  fresh_minus_perm)
    93   by (erule_tac [!] exE, rule_tac [!] x="-p" in exI)
    73 
    94      (auto simp add: fresh_minus_perm)
    74 lemma alpha_gen_trans:
    95 
    75   assumes a: "\<lbrakk>R (p \<bullet> x) y; R (q \<bullet> y) z\<rbrakk> \<Longrightarrow> R ((q + p) \<bullet> x) z"
    96 lemma alphas_abs_trans:
    76   shows "\<lbrakk>(bs, x) \<approx>gen R f p (cs, y); (cs, y) \<approx>gen R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>gen R f (q + p) (ds, z)"
    97   shows "\<lbrakk>(bs, x) \<approx>abs (cs, y); (cs, y) \<approx>abs (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>abs (ds, z)"
    77   and   "\<lbrakk>(bs, x) \<approx>res R f p (cs, y); (cs, y) \<approx>res R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>res R f (q + p) (ds, z)"
    98   and   "\<lbrakk>(bs, x) \<approx>abs_res (cs, y); (cs, y) \<approx>abs_res (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>abs_res (ds, z)"
    78   and   "\<lbrakk>(es, x) \<approx>lst R f p (gs, y); (gs, y) \<approx>lst R f q (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>lst R f (q + p) (hs, z)"
    99   and   "\<lbrakk>(es, x) \<approx>abs_lst (gs, y); (gs, y) \<approx>abs_lst (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>abs_lst (hs, z)"
    79   using a 
   100   unfolding alphas_abs
    80   unfolding alphas
   101   unfolding alphas
    81   unfolding fresh_star_def
   102   unfolding fresh_star_def
       
   103   apply(erule_tac [!] exE, erule_tac [!] exE)
       
   104   apply(rule_tac [!] x="pa + p" in exI)
    82   by (simp_all add: fresh_plus_perm)
   105   by (simp_all add: fresh_plus_perm)
    83 
   106 
    84 lemma alpha_gen_eqvt:
   107 lemma alphas_abs_eqvt:
    85   assumes a: "R (q \<bullet> x) y \<Longrightarrow> R (p \<bullet> (q \<bullet> x)) (p \<bullet> y)"
   108   shows "(bs, x) \<approx>abs (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>abs (p \<bullet> cs, p \<bullet> y)"
    86   and     b: "p \<bullet> (f x) = f (p \<bullet> x)"
   109   and   "(bs, x) \<approx>abs_res (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>abs_res (p \<bullet> cs, p \<bullet> y)"
    87   and     c: "p \<bullet> (f y) = f (p \<bullet> y)"
   110   and   "(ds, x) \<approx>abs_lst (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>abs_lst (p \<bullet> es, p \<bullet> y)"
    88   shows "(bs, x) \<approx>gen R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>gen R f (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
   111   unfolding alphas_abs
    89   and   "(bs, x) \<approx>res R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>res R f (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
       
    90   and   "(ds, x) \<approx>lst R f q (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>lst R f (p \<bullet> q) (p \<bullet> es, p \<bullet> y)" 
       
    91   unfolding alphas
   112   unfolding alphas
    92   unfolding set_eqvt[symmetric]
   113   unfolding set_eqvt[symmetric]
    93   unfolding b[symmetric] c[symmetric]
   114   unfolding supp_eqvt[symmetric]
    94   unfolding Diff_eqvt[symmetric]
   115   unfolding Diff_eqvt[symmetric]
    95   unfolding permute_eqvt[symmetric]
   116   apply(erule_tac [!] exE)
    96   using a
   117   apply(rule_tac [!] x="p \<bullet> pa" in exI)
    97   by (auto simp add: fresh_star_permute_iff)
   118   by (auto simp add: fresh_star_permute_iff permute_eqvt[symmetric])
    98 
   119 
    99 fun
   120 lemma alphas_abs_swap1:
   100   alpha_abs 
       
   101 where
       
   102   "alpha_abs (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op=) supp p (cs, y))"
       
   103 
       
   104 notation
       
   105   alpha_abs ("_ \<approx>abs _")
       
   106 
       
   107 lemma alpha_abs_swap:
       
   108   assumes a1: "a \<notin> (supp x) - bs"
   121   assumes a1: "a \<notin> (supp x) - bs"
   109   and     a2: "b \<notin> (supp x) - bs"
   122   and     a2: "b \<notin> (supp x) - bs"
   110   shows "(bs, x) \<approx>abs ((a \<rightleftharpoons> b) \<bullet> bs, (a \<rightleftharpoons> b) \<bullet> x)"
   123   shows "(bs, x) \<approx>abs ((a \<rightleftharpoons> b) \<bullet> bs, (a \<rightleftharpoons> b) \<bullet> x)"
       
   124   and   "(bs, x) \<approx>abs_res ((a \<rightleftharpoons> b) \<bullet> bs, (a \<rightleftharpoons> b) \<bullet> x)"
   111   using a1 a2
   125   using a1 a2
   112   unfolding Diff_iff
   126   unfolding alphas_abs
   113   unfolding alpha_abs.simps
   127   unfolding alphas
   114   unfolding alphas
   128   unfolding supp_eqvt[symmetric] Diff_eqvt[symmetric] 
   115   unfolding supp_eqvt[symmetric] Diff_eqvt[symmetric]
       
   116   unfolding fresh_star_def fresh_def
   129   unfolding fresh_star_def fresh_def
   117   unfolding swap_set_not_in[OF a1 a2] 
   130   unfolding swap_set_not_in[OF a1 a2] 
   118   by (rule_tac x="(a \<rightleftharpoons> b)" in exI)
   131   by (rule_tac [!] x="(a \<rightleftharpoons> b)" in exI)
   119      (auto simp add: supp_perm swap_atom)
   132      (auto simp add: supp_perm swap_atom)
   120 
   133 
   121 fun
   134 lemma alphas_abs_swap2:
   122   supp_abs_fun
   135   assumes a1: "a \<notin> (supp x) - (set bs)"
   123 where
   136   and     a2: "b \<notin> (supp x) - (set bs)"
   124   "supp_abs_fun (bs, x) = (supp x) - bs"
   137   shows "(bs, x) \<approx>abs_lst ((a \<rightleftharpoons> b) \<bullet> bs, (a \<rightleftharpoons> b) \<bullet> x)"
   125 
   138   using a1 a2
   126 
   139   unfolding alphas_abs
   127 lemma supp_abs_fun_lemma:
   140   unfolding alphas
   128   assumes a: "x \<approx>abs y" 
   141   unfolding supp_eqvt[symmetric] Diff_eqvt[symmetric] set_eqvt[symmetric]
   129   shows "supp_abs_fun x = supp_abs_fun y"
   142   unfolding fresh_star_def fresh_def
       
   143   unfolding swap_set_not_in[OF a1 a2] 
       
   144   by (rule_tac [!] x="(a \<rightleftharpoons> b)" in exI)
       
   145      (auto simp add: supp_perm swap_atom)
       
   146 
       
   147 fun
       
   148   aux_set 
       
   149 where
       
   150   "aux_set (bs, x) = (supp x) - bs"
       
   151 
       
   152 fun
       
   153   aux_list
       
   154 where
       
   155   "aux_list (cs, x) = (supp x) - (set cs)"
       
   156 
       
   157 lemma aux_abs_lemma:
       
   158   assumes a: "(bs, x) \<approx>abs (cs, y)" 
       
   159   shows "aux_set (bs, x) = aux_set (cs, y)"
   130   using a
   160   using a
   131   apply(induct rule: alpha_abs.induct)
   161   by (induct rule: alpha_abs.induct)
   132   apply(simp add: alpha_gen)
   162      (simp add: alphas_abs alphas)
   133   done
   163 
   134   
   164 lemma aux_abs_res_lemma:
   135 
   165   assumes a: "(bs, x) \<approx>abs_res (cs, y)" 
   136 quotient_type 'a abs_gen = "(atom set \<times> 'a::pt)" / "alpha_abs"
   166   shows "aux_set (bs, x) = aux_set (cs, y)"
   137   apply(rule equivpI)
   167   using a
       
   168   by (induct rule: alpha_abs_res.induct)
       
   169      (simp add: alphas_abs alphas)
       
   170  
       
   171 lemma aux_abs_list_lemma:
       
   172   assumes a: "(bs, x) \<approx>abs_lst (cs, y)" 
       
   173   shows "aux_list (bs, x) = aux_list (cs, y)"
       
   174   using a
       
   175   by (induct rule: alpha_abs_lst.induct)
       
   176      (simp add: alphas_abs alphas)
       
   177 
       
   178 quotient_type 
       
   179     'a abs_gen = "(atom set \<times> 'a::pt)" / "alpha_abs"
       
   180 and 'b abs_res = "(atom set \<times> 'b::pt)" / "alpha_abs_res"
       
   181 and 'c abs_lst = "(atom list \<times> 'c::pt)" / "alpha_abs_lst"
       
   182   apply(rule_tac [!] equivpI)
   138   unfolding reflp_def symp_def transp_def
   183   unfolding reflp_def symp_def transp_def
   139   apply(simp_all)
   184   by (auto intro: alphas_abs_sym alphas_abs_refl alphas_abs_trans simp only:)
   140   (* refl *)
       
   141   apply(clarify)
       
   142   apply(rule_tac x="0" in exI)
       
   143   apply(rule alpha_gen_refl)
       
   144   apply(simp)
       
   145   (* symm *)
       
   146   apply(clarify)
       
   147   apply(rule_tac x="- p" in exI)
       
   148   apply(rule alpha_gen_sym)
       
   149   apply(clarsimp)
       
   150   apply(assumption)
       
   151   (* trans *)
       
   152   apply(clarify)
       
   153   apply(rule_tac x="pa + p" in exI)
       
   154   apply(rule alpha_gen_trans)
       
   155   apply(auto)
       
   156   done
       
   157 
   185 
   158 quotient_definition
   186 quotient_definition
   159   "Abs::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_gen"
   187   "Abs::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_gen"
   160 is
   188 is
   161   "Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"
   189   "Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"
   162 
   190 
       
   191 quotient_definition
       
   192   "Abs_res::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_res"
       
   193 is
       
   194   "Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"
       
   195 
       
   196 quotient_definition
       
   197   "Abs_lst::atom list \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_lst"
       
   198 is
       
   199   "Pair::atom list \<Rightarrow> ('a::pt) \<Rightarrow> (atom list \<times> 'a)"
       
   200 
   163 lemma [quot_respect]:
   201 lemma [quot_respect]:
   164   shows "((op =) ===> (op =) ===> alpha_abs) Pair Pair"
   202   shows "(op= ===> op= ===> alpha_abs) Pair Pair"
   165   apply(clarsimp)
   203   and   "(op= ===> op= ===> alpha_abs_res) Pair Pair"
   166   apply(rule exI)
   204   and   "(op= ===> op= ===> alpha_abs_lst) Pair Pair"
   167   apply(rule alpha_gen_refl)
   205   unfolding fun_rel_def
   168   apply(simp)
   206   by (auto intro: alphas_abs_refl simp only:)
   169   done
       
   170 
   207 
   171 lemma [quot_respect]:
   208 lemma [quot_respect]:
   172   shows "((op =) ===> alpha_abs ===> alpha_abs) permute permute"
   209   shows "(op= ===> alpha_abs ===> alpha_abs) permute permute"
   173   apply(clarsimp)
   210   and   "(op= ===> alpha_abs_res ===> alpha_abs_res) permute permute"
   174   apply(rule exI)
   211   and   "(op= ===> alpha_abs_lst ===> alpha_abs_lst) permute permute"
   175   apply(rule alpha_gen_eqvt)
   212   unfolding fun_rel_def
   176   apply(simp_all add: supp_eqvt)
   213   by (auto intro: alphas_abs_eqvt simp only: Pair_eqvt)
   177   done
       
   178 
   214 
   179 lemma [quot_respect]:
   215 lemma [quot_respect]:
   180   shows "(alpha_abs ===> (op =)) supp_abs_fun supp_abs_fun"
   216   shows "(alpha_abs ===> op=) aux_set aux_set"
   181   apply(simp add: supp_abs_fun_lemma)
   217   and   "(alpha_abs_res ===> op=) aux_set aux_set"
   182   done
   218   and   "(alpha_abs_lst ===> op=) aux_list aux_list"
   183 
   219   unfolding fun_rel_def
   184 lemma abs_induct:
   220   apply(rule_tac [!] allI)
   185   "\<lbrakk>\<And>as (x::'a::pt). P (Abs as x)\<rbrakk> \<Longrightarrow> P t"
   221   apply(rule_tac [!] allI)
       
   222   apply(case_tac [!] x, case_tac [!] y)
       
   223   apply(rule_tac [!] impI)
       
   224   by (simp_all only: aux_abs_lemma aux_abs_res_lemma aux_abs_list_lemma)
       
   225 
       
   226 lemma abs_inducts:
       
   227   shows "(\<And>as (x::'a::pt). P1 (Abs as x)) \<Longrightarrow> P1 x1"
       
   228   and   "(\<And>as (x::'a::pt). P2 (Abs_res as x)) \<Longrightarrow> P2 x2"
       
   229   and   "(\<And>as (x::'a::pt). P3 (Abs_lst as x)) \<Longrightarrow> P3 x3"
   186   apply(lifting prod.induct[where 'a="atom set" and 'b="'a"])
   230   apply(lifting prod.induct[where 'a="atom set" and 'b="'a"])
   187   done
   231   apply(lifting prod.induct[where 'a="atom set" and 'b="'a"])
   188 
   232   apply(lifting prod.induct[where 'a="atom list" and 'b="'a"])
   189 (* TEST case *)
   233   done
   190 lemmas abs_induct2 = prod.induct[where 'a="atom set" and 'b="'a::pt", quot_lifted]
       
   191 thm abs_induct abs_induct2
       
   192 
   234 
   193 instantiation abs_gen :: (pt) pt
   235 instantiation abs_gen :: (pt) pt
   194 begin
   236 begin
   195 
   237 
   196 quotient_definition
   238 quotient_definition
   197   "permute_abs_gen::perm \<Rightarrow> ('a::pt abs_gen) \<Rightarrow> 'a abs_gen"
   239   "permute_abs_gen::perm \<Rightarrow> ('a::pt abs_gen) \<Rightarrow> 'a abs_gen"
   198 is
   240 is
   199   "permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"
   241   "permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"
   200 
   242 
   201 (* ??? has to be 'a \<dots> 'b does not work *)
   243 lemma permute_Abs[simp]:
   202 lemma permute_ABS [simp]:
       
   203   fixes x::"'a::pt"  
   244   fixes x::"'a::pt"  
   204   shows "(p \<bullet> (Abs as x)) = Abs (p \<bullet> as) (p \<bullet> x)"
   245   shows "(p \<bullet> (Abs as x)) = Abs (p \<bullet> as) (p \<bullet> x)"
   205   thm permute_prod.simps
   246   by (lifting permute_prod.simps[where 'a="atom set" and 'b="'a"])
   206   by (lifting permute_prod.simps(1)[where 'a="atom set" and 'b="'a"])
       
   207 
   247 
   208 instance
   248 instance
   209   apply(default)
   249   apply(default)
   210   apply(induct_tac [!] x rule: abs_induct)
   250   apply(induct_tac [!] x rule: abs_inducts(1))
   211   apply(simp_all)
   251   apply(simp_all)
   212   done
   252   done
   213 
   253 
   214 end
   254 end
   215 
   255 
   216 quotient_definition
   256 instantiation abs_res :: (pt) pt
   217   "supp_Abs_fun :: ('a::pt) abs_gen \<Rightarrow> atom \<Rightarrow> bool"
   257 begin
   218 is
   258 
   219   "supp_abs_fun"
   259 quotient_definition
   220 
   260   "permute_abs_res::perm \<Rightarrow> ('a::pt abs_res) \<Rightarrow> 'a abs_res"
   221 lemma supp_Abs_fun_simp:
   261 is
   222   shows "supp_Abs_fun (Abs bs x) = (supp x) - bs"
   262   "permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"
   223   by (lifting supp_abs_fun.simps(1))
   263 
   224 
   264 lemma permute_Abs_res[simp]:
   225 lemma supp_Abs_fun_eqvt [eqvt]:
   265   fixes x::"'a::pt"  
   226   shows "(p \<bullet> supp_Abs_fun x) = supp_Abs_fun (p \<bullet> x)"
   266   shows "(p \<bullet> (Abs_res as x)) = Abs_res (p \<bullet> as) (p \<bullet> x)"
   227   apply(induct_tac x rule: abs_induct)
   267   by (lifting permute_prod.simps[where 'a="atom set" and 'b="'a"])
   228   apply(simp add: supp_Abs_fun_simp supp_eqvt Diff_eqvt)
   268 
   229   done
   269 instance
   230 
   270   apply(default)
   231 lemma supp_Abs_fun_fresh:
   271   apply(induct_tac [!] x rule: abs_inducts(2))
   232   shows "a \<sharp> Abs bs x \<Longrightarrow> a \<sharp> supp_Abs_fun (Abs bs x)"
   272   apply(simp_all)
   233   apply(rule fresh_fun_eqvt_app)
   273   done
   234   apply(simp add: eqvts_raw)
   274 
   235   apply(simp)
   275 end
   236   done
   276 
   237 
   277 instantiation abs_lst :: (pt) pt
   238 lemma Abs_swap:
   278 begin
       
   279 
       
   280 quotient_definition
       
   281   "permute_abs_lst::perm \<Rightarrow> ('a::pt abs_lst) \<Rightarrow> 'a abs_lst"
       
   282 is
       
   283   "permute:: perm \<Rightarrow> (atom list \<times> 'a::pt) \<Rightarrow> (atom list \<times> 'a::pt)"
       
   284 
       
   285 lemma permute_Abs_lst[simp]:
       
   286   fixes x::"'a::pt"  
       
   287   shows "(p \<bullet> (Abs_lst as x)) = Abs_lst (p \<bullet> as) (p \<bullet> x)"
       
   288   by (lifting permute_prod.simps[where 'a="atom list" and 'b="'a"])
       
   289 
       
   290 instance
       
   291   apply(default)
       
   292   apply(induct_tac [!] x rule: abs_inducts(3))
       
   293   apply(simp_all)
       
   294   done
       
   295 
       
   296 end
       
   297 
       
   298 lemmas permute_abs = permute_Abs permute_Abs_res permute_Abs_lst
       
   299 
       
   300 
       
   301 quotient_definition
       
   302   "supp_gen :: ('a::pt) abs_gen \<Rightarrow> atom set"
       
   303 is
       
   304   "aux_set"
       
   305 
       
   306 quotient_definition
       
   307   "supp_res :: ('a::pt) abs_res \<Rightarrow> atom set"
       
   308 is
       
   309   "aux_set"
       
   310 
       
   311 quotient_definition
       
   312   "supp_lst :: ('a::pt) abs_lst \<Rightarrow> atom set"
       
   313 is
       
   314   "aux_list"
       
   315 
       
   316 lemma aux_supps:
       
   317   shows "supp_gen (Abs bs x) = (supp x) - bs"
       
   318   and   "supp_res (Abs_res bs x) = (supp x) - bs"
       
   319   and   "supp_lst (Abs_lst cs x) = (supp x) - (set cs)"
       
   320   apply(lifting aux_set.simps)
       
   321   apply(lifting aux_set.simps)
       
   322   apply(lifting aux_list.simps)
       
   323   done
       
   324 
       
   325 lemma aux_supp_eqvt[eqvt]:
       
   326   shows "(p \<bullet> supp_gen x) = supp_gen (p \<bullet> x)"
       
   327   and   "(p \<bullet> supp_res y) = supp_res (p \<bullet> y)"
       
   328   and   "(p \<bullet> supp_lst z) = supp_lst (p \<bullet> z)"
       
   329   apply(induct_tac x rule: abs_inducts(1))
       
   330   apply(simp add: aux_supps supp_eqvt Diff_eqvt)
       
   331   apply(induct_tac y rule: abs_inducts(2))
       
   332   apply(simp add: aux_supps supp_eqvt Diff_eqvt)
       
   333   apply(induct_tac z rule: abs_inducts(3))
       
   334   apply(simp add: aux_supps supp_eqvt Diff_eqvt set_eqvt)
       
   335   done
       
   336 
       
   337 lemma aux_fresh:
       
   338   shows "a \<sharp> Abs bs x \<Longrightarrow> a \<sharp> supp_gen (Abs bs x)"
       
   339   and   "a \<sharp> Abs_res bs x \<Longrightarrow> a \<sharp> supp_res (Abs_res bs x)"
       
   340   and   "a \<sharp> Abs_lst cs x \<Longrightarrow> a \<sharp> supp_lst (Abs_lst cs x)"
       
   341   apply(rule_tac [!] fresh_fun_eqvt_app)
       
   342   apply(simp_all add: eqvts_raw)
       
   343   done
       
   344 
       
   345 lemma abs_swap1:
   239   assumes a1: "a \<notin> (supp x) - bs"
   346   assumes a1: "a \<notin> (supp x) - bs"
   240   and     a2: "b \<notin> (supp x) - bs"
   347   and     a2: "b \<notin> (supp x) - bs"
   241   shows "(Abs bs x) = (Abs ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x))"
   348   shows "Abs bs x = Abs ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
   242   using a1 a2 by (lifting alpha_abs_swap)
   349   and   "Abs_res bs x = Abs_res ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
   243 
   350   using a1 a2 
   244 lemma Abs_supports:
   351   apply(lifting alphas_abs_swap1(1))
       
   352   apply(lifting alphas_abs_swap1(2))
       
   353   done
       
   354 
       
   355 lemma abs_swap2:
       
   356   assumes a1: "a \<notin> (supp x) - (set bs)"
       
   357   and     a2: "b \<notin> (supp x) - (set bs)"
       
   358   shows "Abs_lst bs x = Abs_lst ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
       
   359   using a1 a2 by (lifting alphas_abs_swap2)
       
   360 
       
   361 lemma abs_supports:
   245   shows "((supp x) - as) supports (Abs as x)"
   362   shows "((supp x) - as) supports (Abs as x)"
       
   363   and   "((supp x) - as) supports (Abs_res as x)"
       
   364   and   "((supp x) - (set bs)) supports (Abs_lst bs x)"
   246   unfolding supports_def
   365   unfolding supports_def
   247   apply(clarify)
   366   unfolding permute_abs
   248   apply(simp (no_asm))
   367   by (simp_all add: abs_swap1[symmetric] abs_swap2[symmetric])
   249   apply(subst Abs_swap[symmetric])
   368 
   250   apply(simp_all)
   369 lemma supp_abs_subset1:
   251   done
   370   assumes a: "finite (supp x)"
   252 
       
   253 lemma finite_supp_Abs_subset1:
       
   254   assumes "finite (supp x)"
       
   255   shows "(supp x) - as \<subseteq> supp (Abs as x)"
   371   shows "(supp x) - as \<subseteq> supp (Abs as x)"
   256   apply(simp add: supp_conv_fresh)
   372   and   "(supp x) - as \<subseteq> supp (Abs_res as x)"
   257   apply(auto)
   373   and   "(supp x) - (set bs) \<subseteq> supp (Abs_lst bs x)"
   258   apply(drule_tac supp_Abs_fun_fresh)
   374   unfolding supp_conv_fresh
   259   apply(simp only: supp_Abs_fun_simp)
   375   apply(auto dest!: aux_fresh simp add: aux_supps)
   260   apply(simp add: fresh_def)
   376   apply(simp_all add: fresh_def supp_finite_atom_set a)
   261   apply(simp add: supp_finite_atom_set assms)
   377   done
   262   done
   378 
   263 
   379 lemma supp_abs_subset2:
   264 lemma finite_supp_Abs_subset2:
   380   assumes a: "finite (supp x)"
   265   assumes "finite (supp x)"
       
   266   shows "supp (Abs as x) \<subseteq> (supp x) - as"
   381   shows "supp (Abs as x) \<subseteq> (supp x) - as"
   267   apply(rule supp_is_subset)
   382   and   "supp (Abs_res as x) \<subseteq> (supp x) - as"
   268   apply(rule Abs_supports)
   383   and   "supp (Abs_lst bs x) \<subseteq> (supp x) - (set bs)"
   269   apply(simp add: assms)
   384   apply(rule_tac [!] supp_is_subset)
   270   done
   385   apply(simp_all add: abs_supports a)
   271 
   386   done
   272 lemma finite_supp_Abs:
   387 
   273   assumes "finite (supp x)"
   388 lemma abs_finite_supp:
       
   389   assumes a: "finite (supp x)"
   274   shows "supp (Abs as x) = (supp x) - as"
   390   shows "supp (Abs as x) = (supp x) - as"
   275   apply(rule_tac subset_antisym)
   391   and   "supp (Abs_res as x) = (supp x) - as"
   276   apply(rule finite_supp_Abs_subset2[OF assms])
   392   and   "supp (Abs_lst bs x) = (supp x) - (set bs)"
   277   apply(rule finite_supp_Abs_subset1[OF assms])
   393   apply(rule_tac [!] subset_antisym)
   278   done
   394   apply(simp_all add: supp_abs_subset1[OF a] supp_abs_subset2[OF a])
   279 
   395   done
   280 lemma supp_Abs:
   396 
       
   397 lemma supp_abs:
   281   fixes x::"'a::fs"
   398   fixes x::"'a::fs"
   282   shows "supp (Abs as x) = (supp x) - as"
   399   shows "supp (Abs as x) = (supp x) - as"
   283   apply(rule finite_supp_Abs)
   400   and   "supp (Abs_res as x) = (supp x) - as"
   284   apply(simp add: finite_supp)
   401   and   "supp (Abs_lst bs x) = (supp x) - (set bs)"
       
   402   apply(rule_tac [!] abs_finite_supp)
       
   403   apply(simp_all add: finite_supp)
   285   done
   404   done
   286 
   405 
   287 instance abs_gen :: (fs) fs
   406 instance abs_gen :: (fs) fs
   288   apply(default)
   407   apply(default)
   289   apply(induct_tac x rule: abs_induct)
   408   apply(induct_tac x rule: abs_inducts(1))
   290   apply(simp add: supp_Abs)
   409   apply(simp add: supp_abs finite_supp)
   291   apply(simp add: finite_supp)
   410   done
   292   done
   411 
   293 
   412 instance abs_res :: (fs) fs
   294 lemma Abs_fresh_iff:
   413   apply(default)
       
   414   apply(induct_tac x rule: abs_inducts(2))
       
   415   apply(simp add: supp_abs finite_supp)
       
   416   done
       
   417 
       
   418 instance abs_lst :: (fs) fs
       
   419   apply(default)
       
   420   apply(induct_tac x rule: abs_inducts(3))
       
   421   apply(simp add: supp_abs finite_supp)
       
   422   done
       
   423 
       
   424 lemma abs_fresh_iff:
   295   fixes x::"'a::fs"
   425   fixes x::"'a::fs"
   296   shows "a \<sharp> Abs bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
   426   shows "a \<sharp> Abs bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
   297   apply(simp add: fresh_def)
   427   and   "a \<sharp> Abs_res bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
   298   apply(simp add: supp_Abs)
   428   and   "a \<sharp> Abs_lst cs x \<longleftrightarrow> a \<in> (set cs) \<or> (a \<notin> (set cs) \<and> a \<sharp> x)"
   299   apply(auto)
   429   unfolding fresh_def
   300   done
   430   unfolding supp_abs
   301 
   431   by auto
   302 lemma Abs_eq_iff:
   432 
   303   shows "Abs bs x = Abs cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op =) supp p (cs, y))"
   433 lemma abs_eq_iff:
   304   by (lifting alpha_abs.simps(1))
   434   shows "Abs bs x = Abs cs y \<longleftrightarrow> (bs, x) \<approx>abs (cs, y)"
   305 
   435   and   "Abs_res bs x = Abs_res cs y \<longleftrightarrow> (bs, x) \<approx>abs_res (cs, y)"
   306 
   436   and   "Abs_lst ds x = Abs_lst hs y \<longleftrightarrow> (ds, x) \<approx>abs_lst (hs, y)"
   307 
   437   apply(simp_all)
   308 (* 
   438   apply(lifting alphas_abs)
   309   below is a construction site for showing that in the
   439   done
   310   single-binder case, the old and new alpha equivalence 
   440 
   311   coincide
   441 
   312 *)
   442 section {* BELOW is stuff that may or may not be needed *}
   313 
       
   314 fun
       
   315   alpha1
       
   316 where
       
   317   "alpha1 (a, x) (b, y) \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y)"
       
   318 
       
   319 notation 
       
   320   alpha1 ("_ \<approx>abs1 _")
       
   321 
       
   322 fun
       
   323   alpha2
       
   324 where
       
   325   "alpha2 (a, x) (b, y) \<longleftrightarrow> (\<exists>c. c \<sharp> (a,b,x,y) \<and> ((c \<rightleftharpoons> a) \<bullet> x) = ((c \<rightleftharpoons> b) \<bullet> y))"
       
   326 
       
   327 notation 
       
   328   alpha2 ("_ \<approx>abs2 _")
       
   329 
       
   330 lemma alpha_old_new:
       
   331   assumes a: "(a, x) \<approx>abs1 (b, y)" "sort_of a = sort_of b"
       
   332   shows "({a}, x) \<approx>abs ({b}, y)"
       
   333 using a
       
   334 apply(simp)
       
   335 apply(erule disjE)
       
   336 apply(simp)
       
   337 apply(rule exI)
       
   338 apply(rule alpha_gen_refl)
       
   339 apply(simp)
       
   340 apply(rule_tac x="(a \<rightleftharpoons> b)" in  exI)
       
   341 apply(simp add: alpha_gen)
       
   342 apply(simp add: fresh_def)
       
   343 apply(rule conjI)
       
   344 apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in  permute_eq_iff[THEN iffD1])
       
   345 apply(rule trans)
       
   346 apply(simp add: Diff_eqvt supp_eqvt)
       
   347 apply(subst swap_set_not_in)
       
   348 back
       
   349 apply(simp)
       
   350 apply(simp)
       
   351 apply(simp add: permute_set_eq)
       
   352 apply(rule conjI)
       
   353 apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in fresh_star_permute_iff[THEN iffD1])
       
   354 apply(simp add: permute_self)
       
   355 apply(simp add: Diff_eqvt supp_eqvt)
       
   356 apply(simp add: permute_set_eq)
       
   357 apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}")
       
   358 apply(simp add: fresh_star_def fresh_def)
       
   359 apply(blast)
       
   360 apply(simp add: supp_swap)
       
   361 apply(simp add: eqvts)
       
   362 done
       
   363 
       
   364 
       
   365 lemma perm_induct_test:
       
   366   fixes P :: "perm => bool"
       
   367   assumes fin: "finite (supp p)" 
       
   368   assumes zero: "P 0"
       
   369   assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)"
       
   370   assumes plus: "\<And>p1 p2. \<lbrakk>supp p1 \<inter> supp p2 = {}; P p1; P p2\<rbrakk> \<Longrightarrow> P (p1 + p2)"
       
   371   shows "P p"
       
   372 using fin
       
   373 apply(induct F\<equiv>"supp p" arbitrary: p rule: finite_induct)
       
   374 oops
       
   375 
       
   376 lemma ii:
       
   377   assumes "\<forall>x \<in> A. p \<bullet> x = x"
       
   378   shows "p \<bullet> A = A"
       
   379 using assms
       
   380 apply(auto)
       
   381 apply (metis Collect_def Collect_mem_eq Int_absorb assms eqvt_bound inf_Int_eq mem_def mem_permute_iff)
       
   382 apply (metis Collect_def Collect_mem_eq Int_absorb assms eqvt_apply eqvt_bound eqvt_lambda inf_Int_eq mem_def mem_permute_iff permute_minus_cancel(2) permute_pure)
       
   383 done
       
   384 
       
   385 
       
   386 
       
   387 lemma alpha_abs_Pair:
       
   388   shows "(bs, (x1, x2)) \<approx>gen (\<lambda>(x1,x2) (y1,y2). x1=y1 \<and> x2=y2) (\<lambda>(x,y). supp x \<union> supp y) p (cs, (y1, y2))
       
   389          \<longleftrightarrow> ((bs, x1) \<approx>gen (op=) supp p (cs, y1) \<and> (bs, x2) \<approx>gen (op=) supp p (cs, y2))"         
       
   390   apply(simp add: alpha_gen)
       
   391   apply(simp add: fresh_star_def)
       
   392   apply(simp add: ball_Un Un_Diff)
       
   393   apply(rule iffI)
       
   394   apply(simp)
       
   395   defer
       
   396   apply(simp)
       
   397   apply(rule conjI)
       
   398   apply(clarify)
       
   399   apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
       
   400   apply(rule sym)
       
   401   apply(rule ii)
       
   402   apply(simp add: fresh_def supp_perm)
       
   403   apply(clarify)
       
   404   apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
       
   405   apply(simp add: fresh_def supp_perm)
       
   406   apply(rule sym)
       
   407   apply(rule ii)
       
   408   apply(simp)
       
   409   done
       
   410 
       
   411 
       
   412 lemma yy:
       
   413   assumes "S1 - {x} = S2 - {x}" "x \<in> S1" "x \<in> S2"
       
   414   shows "S1 = S2"
       
   415 using assms
       
   416 apply (metis insert_Diff_single insert_absorb)
       
   417 done
       
   418 
       
   419 lemma kk:
       
   420   assumes a: "p \<bullet> x = y"
       
   421   shows "\<forall>a \<in> supp x. (p \<bullet> a) \<in> supp y"
       
   422 using a
       
   423 apply(auto)
       
   424 apply(rule_tac p="- p" in permute_boolE)
       
   425 apply(simp add: mem_eqvt supp_eqvt)
       
   426 done
       
   427 
       
   428 lemma ww:
       
   429   assumes "a \<notin> supp x" "b \<in> supp x" "a \<noteq> b" "sort_of a = sort_of b"
       
   430   shows "((a \<rightleftharpoons> b) \<bullet> x) \<noteq> x"
       
   431 apply(subgoal_tac "(supp x) supports x")
       
   432 apply(simp add: supports_def)
       
   433 using assms
       
   434 apply -
       
   435 apply(drule_tac x="a" in spec)
       
   436 defer
       
   437 apply(rule supp_supports)
       
   438 apply(auto)
       
   439 apply(rotate_tac 1)
       
   440 apply(drule_tac p="(a \<rightleftharpoons> b)" in permute_boolI)
       
   441 apply(simp add: mem_eqvt supp_eqvt)
       
   442 done
       
   443 
       
   444 lemma alpha_abs_sym:
       
   445   assumes a: "({a}, x) \<approx>abs ({b}, y)"
       
   446   shows "({b}, y) \<approx>abs ({a}, x)"
       
   447 using a
       
   448 apply(simp)
       
   449 apply(erule exE)
       
   450 apply(rule_tac x="- p" in exI)
       
   451 apply(simp add: alpha_gen)
       
   452 apply(simp add: fresh_star_def fresh_minus_perm)
       
   453 apply (metis permute_minus_cancel(2))
       
   454 done
       
   455 
       
   456 lemma alpha_abs_trans:
       
   457   assumes a: "({a1}, x1) \<approx>abs ({a2}, x2)"
       
   458   assumes b: "({a2}, x2) \<approx>abs ({a3}, x3)"
       
   459   shows "({a1}, x1) \<approx>abs ({a3}, x3)"
       
   460 using a b
       
   461 apply(simp)
       
   462 apply(erule exE)+
       
   463 apply(rule_tac x="pa + p" in exI)
       
   464 apply(simp add: alpha_gen)
       
   465 apply(simp add: fresh_star_def fresh_plus_perm)
       
   466 done
       
   467 
       
   468 lemma alpha_equal:
       
   469   assumes a: "({a}, x) \<approx>abs ({a}, y)" 
       
   470   shows "(a, x) \<approx>abs1 (a, y)"
       
   471 using a
       
   472 apply(simp)
       
   473 apply(erule exE)
       
   474 apply(simp add: alpha_gen)
       
   475 apply(erule conjE)+
       
   476 apply(case_tac "a \<notin> supp x")
       
   477 apply(simp)
       
   478 apply(subgoal_tac "supp x \<sharp>* p")
       
   479 apply(drule supp_perm_eq)
       
   480 apply(simp)
       
   481 apply(simp)
       
   482 apply(simp)
       
   483 apply(case_tac "a \<notin> supp y")
       
   484 apply(simp)
       
   485 apply(drule supp_perm_eq)
       
   486 apply(clarify)
       
   487 apply(simp (no_asm_use))
       
   488 apply(simp)
       
   489 apply(simp)
       
   490 apply(drule yy)
       
   491 apply(simp)
       
   492 apply(simp)
       
   493 apply(simp)
       
   494 apply(case_tac "a \<sharp> p")
       
   495 apply(subgoal_tac "supp y \<sharp>* p")
       
   496 apply(drule supp_perm_eq)
       
   497 apply(clarify)
       
   498 apply(simp (no_asm_use))
       
   499 apply(metis)
       
   500 apply(auto simp add: fresh_star_def)[1]
       
   501 apply(frule_tac kk)
       
   502 apply(drule_tac x="a" in bspec)
       
   503 apply(simp)
       
   504 apply(simp add: fresh_def)
       
   505 apply(simp add: supp_perm)
       
   506 apply(subgoal_tac "((p \<bullet> a) \<sharp> p)")
       
   507 apply(simp add: fresh_def supp_perm)
       
   508 apply(simp add: fresh_star_def)
       
   509 done
       
   510 
       
   511 lemma alpha_unequal:
       
   512   assumes a: "({a}, x) \<approx>abs ({b}, y)" "sort_of a = sort_of b" "a \<noteq> b"
       
   513   shows "(a, x) \<approx>abs1 (b, y)"
       
   514 using a
       
   515 apply -
       
   516 apply(subgoal_tac "a \<notin> supp x - {a}")
       
   517 apply(subgoal_tac "b \<notin> supp x - {a}")
       
   518 defer
       
   519 apply(simp add: alpha_gen)
       
   520 apply(simp)
       
   521 apply(drule_tac alpha_abs_swap)
       
   522 apply(assumption)
       
   523 apply(simp only: insert_eqvt empty_eqvt swap_atom_simps)
       
   524 apply(drule alpha_abs_sym)
       
   525 apply(rotate_tac 4)
       
   526 apply(drule_tac alpha_abs_trans)
       
   527 apply(assumption)
       
   528 apply(drule alpha_equal)
       
   529 apply(simp)
       
   530 apply(rule_tac p="(a \<rightleftharpoons> b)" in permute_boolE)
       
   531 apply(simp add: fresh_eqvt)
       
   532 apply(simp add: fresh_def)
       
   533 done
       
   534 
       
   535 lemma alpha_new_old:
       
   536   assumes a: "({a}, x) \<approx>abs ({b}, y)" "sort_of a = sort_of b" 
       
   537   shows "(a, x) \<approx>abs1 (b, y)"
       
   538 using a
       
   539 apply(case_tac "a=b")
       
   540 apply(simp only: alpha_equal)
       
   541 apply(drule alpha_unequal)
       
   542 apply(simp)
       
   543 apply(simp)
       
   544 apply(simp)
       
   545 done
       
   546 
   443 
   547 (* support of concrete atom sets *)
   444 (* support of concrete atom sets *)
   548 
   445 
   549 lemma supp_atom_image:
   446 lemma supp_atom_image:
   550   fixes as::"'a::at_base set"
   447   fixes as::"'a::at_base set"
   561   apply (fold fresh_def)
   458   apply (fold fresh_def)
   562   apply (simp add: swap_fresh_fresh)
   459   apply (simp add: swap_fresh_fresh)
   563   done
   460   done
   564 
   461 
   565 (* TODO: The following lemmas can be moved somewhere... *)
   462 (* TODO: The following lemmas can be moved somewhere... *)
       
   463 
       
   464 lemma Abs_eq_iff:
       
   465   shows "Abs bs x = Abs cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op =) supp p (cs, y))"
       
   466   by (lifting alpha_abs.simps(1))
       
   467 
       
   468 
   566 lemma split_rsp2[quot_respect]: "((R1 ===> R2 ===> prod_rel R1 R2 ===> op =) ===>
   469 lemma split_rsp2[quot_respect]: "((R1 ===> R2 ===> prod_rel R1 R2 ===> op =) ===>
   567   prod_rel R1 R2 ===> prod_rel R1 R2 ===> op =) split split"
   470   prod_rel R1 R2 ===> prod_rel R1 R2 ===> op =) split split"
   568   by auto
   471   by auto
   569 
   472 
   570 lemma split_prs2[quot_preserve]:
   473 lemma split_prs2[quot_preserve]:
   671   apply(rotate_tac -1)
   574   apply(rotate_tac -1)
   672   apply(drule_tac pi="pia" in r2)
   575   apply(drule_tac pi="pia" in r2)
   673   apply(simp)
   576   apply(simp)
   674   done
   577   done
   675 
   578 
       
   579 lemma alpha_gen_refl:
       
   580   assumes a: "R x x"
       
   581   shows "(bs, x) \<approx>gen R f 0 (bs, x)"
       
   582   and   "(bs, x) \<approx>res R f 0 (bs, x)"
       
   583   and   "(cs, x) \<approx>lst R f 0 (cs, x)"
       
   584   using a 
       
   585   unfolding alphas
       
   586   unfolding fresh_star_def
       
   587   by (simp_all add: fresh_zero_perm)
       
   588 
       
   589 lemma alpha_gen_sym:
       
   590   assumes a: "R (p \<bullet> x) y \<Longrightarrow> R (- p \<bullet> y) x"
       
   591   shows "(bs, x) \<approx>gen R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>gen R f (- p) (bs, x)"
       
   592   and   "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)"
       
   593   and   "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
       
   594   using a
       
   595   unfolding alphas
       
   596   unfolding fresh_star_def
       
   597   by (auto simp add:  fresh_minus_perm)
       
   598 
       
   599 lemma alpha_gen_trans:
       
   600   assumes a: "\<lbrakk>R (p \<bullet> x) y; R (q \<bullet> y) z\<rbrakk> \<Longrightarrow> R ((q + p) \<bullet> x) z"
       
   601   shows "\<lbrakk>(bs, x) \<approx>gen R f p (cs, y); (cs, y) \<approx>gen R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>gen R f (q + p) (ds, z)"
       
   602   and   "\<lbrakk>(bs, x) \<approx>res R f p (cs, y); (cs, y) \<approx>res R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>res R f (q + p) (ds, z)"
       
   603   and   "\<lbrakk>(es, x) \<approx>lst R f p (gs, y); (gs, y) \<approx>lst R f q (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>lst R f (q + p) (hs, z)"
       
   604   using a 
       
   605   unfolding alphas
       
   606   unfolding fresh_star_def
       
   607   by (simp_all add: fresh_plus_perm)
       
   608 
       
   609 lemma alpha_gen_eqvt:
       
   610   assumes a: "R (q \<bullet> x) y \<Longrightarrow> R (p \<bullet> (q \<bullet> x)) (p \<bullet> y)"
       
   611   and     b: "p \<bullet> (f x) = f (p \<bullet> x)"
       
   612   and     c: "p \<bullet> (f y) = f (p \<bullet> y)"
       
   613   shows "(bs, x) \<approx>gen R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>gen R f (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
       
   614   and   "(bs, x) \<approx>res R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>res R f (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
       
   615   and   "(ds, x) \<approx>lst R f q (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>lst R f (p \<bullet> q) (p \<bullet> es, p \<bullet> y)" 
       
   616   unfolding alphas
       
   617   unfolding set_eqvt[symmetric]
       
   618   unfolding b[symmetric] c[symmetric]
       
   619   unfolding Diff_eqvt[symmetric]
       
   620   unfolding permute_eqvt[symmetric]
       
   621   using a
       
   622   by (auto simp add: fresh_star_permute_iff)
       
   623 
       
   624 
   676 end
   625 end
   677 
   626