Nominal-General/Nominal2_Base.thy
changeset 1941 d33781f9d2c7
parent 1933 9eab1dfc14d2
child 1962 84a13d1e2511
equal deleted inserted replaced
1940:0913f697fe73 1941:d33781f9d2c7
  1079   shows "supp (f x) \<subseteq> (supp f) \<union> (supp x)"
  1079   shows "supp (f x) \<subseteq> (supp f) \<union> (supp x)"
  1080   using fresh_fun_app
  1080   using fresh_fun_app
  1081   unfolding fresh_def
  1081   unfolding fresh_def
  1082   by auto
  1082   by auto
  1083 
  1083 
       
  1084 lemma supp_fun_eqvt:
       
  1085   assumes a: "\<forall>p. p \<bullet> f = f"
       
  1086   shows "supp f = {}"
       
  1087   unfolding supp_def 
       
  1088   using a by simp
       
  1089 
       
  1090 
  1084 lemma fresh_fun_eqvt_app:
  1091 lemma fresh_fun_eqvt_app:
  1085   assumes a: "\<forall>p. p \<bullet> f = f"
  1092   assumes a: "\<forall>p. p \<bullet> f = f"
  1086   shows "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
  1093   shows "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
  1087 proof -
  1094 proof -
  1088   from a have "supp f = {}"
  1095   from a have "supp f = {}" by (simp add: supp_fun_eqvt)
  1089     unfolding supp_def by simp
       
  1090   then show "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
  1096   then show "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
  1091     unfolding fresh_def
  1097     unfolding fresh_def
  1092     using supp_fun_app 
  1098     using supp_fun_app 
  1093     by auto
  1099     by auto
  1094 qed
  1100 qed