|
1 theory QuotMain |
|
2 imports QuotScript QuotList Prove |
|
3 uses ("quotient_info.ML") |
|
4 ("quotient.ML") |
|
5 ("quotient_def.ML") |
|
6 begin |
|
7 |
|
8 locale QUOT_TYPE = |
|
9 fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool" |
|
10 and Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b" |
|
11 and Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)" |
|
12 assumes equiv: "EQUIV R" |
|
13 and rep_prop: "\<And>y. \<exists>x. Rep y = R x" |
|
14 and rep_inverse: "\<And>x. Abs (Rep x) = x" |
|
15 and abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)" |
|
16 and rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)" |
|
17 begin |
|
18 |
|
19 definition |
|
20 ABS::"'a \<Rightarrow> 'b" |
|
21 where |
|
22 "ABS x \<equiv> Abs (R x)" |
|
23 |
|
24 definition |
|
25 REP::"'b \<Rightarrow> 'a" |
|
26 where |
|
27 "REP a = Eps (Rep a)" |
|
28 |
|
29 lemma lem9: |
|
30 shows "R (Eps (R x)) = R x" |
|
31 proof - |
|
32 have a: "R x x" using equiv by (simp add: EQUIV_REFL_SYM_TRANS REFL_def) |
|
33 then have "R x (Eps (R x))" by (rule someI) |
|
34 then show "R (Eps (R x)) = R x" |
|
35 using equiv unfolding EQUIV_def by simp |
|
36 qed |
|
37 |
|
38 theorem thm10: |
|
39 shows "ABS (REP a) \<equiv> a" |
|
40 apply (rule eq_reflection) |
|
41 unfolding ABS_def REP_def |
|
42 proof - |
|
43 from rep_prop |
|
44 obtain x where eq: "Rep a = R x" by auto |
|
45 have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp |
|
46 also have "\<dots> = Abs (R x)" using lem9 by simp |
|
47 also have "\<dots> = Abs (Rep a)" using eq by simp |
|
48 also have "\<dots> = a" using rep_inverse by simp |
|
49 finally |
|
50 show "Abs (R (Eps (Rep a))) = a" by simp |
|
51 qed |
|
52 |
|
53 lemma REP_refl: |
|
54 shows "R (REP a) (REP a)" |
|
55 unfolding REP_def |
|
56 by (simp add: equiv[simplified EQUIV_def]) |
|
57 |
|
58 lemma lem7: |
|
59 shows "(R x = R y) = (Abs (R x) = Abs (R y))" |
|
60 apply(rule iffI) |
|
61 apply(simp) |
|
62 apply(drule rep_inject[THEN iffD2]) |
|
63 apply(simp add: abs_inverse) |
|
64 done |
|
65 |
|
66 theorem thm11: |
|
67 shows "R r r' = (ABS r = ABS r')" |
|
68 unfolding ABS_def |
|
69 by (simp only: equiv[simplified EQUIV_def] lem7) |
|
70 |
|
71 |
|
72 lemma REP_ABS_rsp: |
|
73 shows "R f (REP (ABS g)) = R f g" |
|
74 and "R (REP (ABS g)) f = R g f" |
|
75 by (simp_all add: thm10 thm11) |
|
76 |
|
77 lemma QUOTIENT: |
|
78 "QUOTIENT R ABS REP" |
|
79 apply(unfold QUOTIENT_def) |
|
80 apply(simp add: thm10) |
|
81 apply(simp add: REP_refl) |
|
82 apply(subst thm11[symmetric]) |
|
83 apply(simp add: equiv[simplified EQUIV_def]) |
|
84 done |
|
85 |
|
86 lemma R_trans: |
|
87 assumes ab: "R a b" |
|
88 and bc: "R b c" |
|
89 shows "R a c" |
|
90 proof - |
|
91 have tr: "TRANS R" using equiv EQUIV_REFL_SYM_TRANS[of R] by simp |
|
92 moreover have ab: "R a b" by fact |
|
93 moreover have bc: "R b c" by fact |
|
94 ultimately show "R a c" unfolding TRANS_def by blast |
|
95 qed |
|
96 |
|
97 lemma R_sym: |
|
98 assumes ab: "R a b" |
|
99 shows "R b a" |
|
100 proof - |
|
101 have re: "SYM R" using equiv EQUIV_REFL_SYM_TRANS[of R] by simp |
|
102 then show "R b a" using ab unfolding SYM_def by blast |
|
103 qed |
|
104 |
|
105 lemma R_trans2: |
|
106 assumes ac: "R a c" |
|
107 and bd: "R b d" |
|
108 shows "R a b = R c d" |
|
109 using ac bd |
|
110 by (blast intro: R_trans R_sym) |
|
111 |
|
112 lemma REPS_same: |
|
113 shows "R (REP a) (REP b) \<equiv> (a = b)" |
|
114 proof - |
|
115 have "R (REP a) (REP b) = (a = b)" |
|
116 proof |
|
117 assume as: "R (REP a) (REP b)" |
|
118 from rep_prop |
|
119 obtain x y |
|
120 where eqs: "Rep a = R x" "Rep b = R y" by blast |
|
121 from eqs have "R (Eps (R x)) (Eps (R y))" using as unfolding REP_def by simp |
|
122 then have "R x (Eps (R y))" using lem9 by simp |
|
123 then have "R (Eps (R y)) x" using R_sym by blast |
|
124 then have "R y x" using lem9 by simp |
|
125 then have "R x y" using R_sym by blast |
|
126 then have "ABS x = ABS y" using thm11 by simp |
|
127 then have "Abs (Rep a) = Abs (Rep b)" using eqs unfolding ABS_def by simp |
|
128 then show "a = b" using rep_inverse by simp |
|
129 next |
|
130 assume ab: "a = b" |
|
131 have "REFL R" using equiv EQUIV_REFL_SYM_TRANS[of R] by simp |
|
132 then show "R (REP a) (REP b)" unfolding REFL_def using ab by auto |
|
133 qed |
|
134 then show "R (REP a) (REP b) \<equiv> (a = b)" by simp |
|
135 qed |
|
136 |
|
137 end |
|
138 |
|
139 lemma equiv_trans2: |
|
140 assumes e: "EQUIV R" |
|
141 and ac: "R a c" |
|
142 and bd: "R b d" |
|
143 shows "R a b = R c d" |
|
144 using ac bd e |
|
145 unfolding EQUIV_REFL_SYM_TRANS TRANS_def SYM_def |
|
146 by (blast) |
|
147 |
|
148 section {* type definition for the quotient type *} |
|
149 |
|
150 (* the auxiliary data for the quotient types *) |
|
151 use "quotient_info.ML" |
|
152 |
|
153 declare [[map list = (map, LIST_REL)]] |
|
154 declare [[map * = (prod_fun, prod_rel)]] |
|
155 declare [[map "fun" = (fun_map, FUN_REL)]] |
|
156 |
|
157 ML {* maps_lookup @{theory} "List.list" *} |
|
158 ML {* maps_lookup @{theory} "*" *} |
|
159 ML {* maps_lookup @{theory} "fun" *} |
|
160 |
|
161 |
|
162 (* definition of the quotient types *) |
|
163 (* FIXME: should be called quotient_typ.ML *) |
|
164 use "quotient.ML" |
|
165 |
|
166 |
|
167 (* lifting of constants *) |
|
168 use "quotient_def.ML" |
|
169 |
|
170 (* TODO: Consider defining it with an "if"; sth like: |
|
171 Babs p m = \<lambda>x. if x \<in> p then m x else undefined |
|
172 *) |
|
173 definition |
|
174 Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" |
|
175 where |
|
176 "(x \<in> p) \<Longrightarrow> (Babs p m x = m x)" |
|
177 |
|
178 section {* ATOMIZE *} |
|
179 |
|
180 lemma atomize_eqv[atomize]: |
|
181 shows "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)" |
|
182 proof |
|
183 assume "A \<equiv> B" |
|
184 then show "Trueprop A \<equiv> Trueprop B" by unfold |
|
185 next |
|
186 assume *: "Trueprop A \<equiv> Trueprop B" |
|
187 have "A = B" |
|
188 proof (cases A) |
|
189 case True |
|
190 have "A" by fact |
|
191 then show "A = B" using * by simp |
|
192 next |
|
193 case False |
|
194 have "\<not>A" by fact |
|
195 then show "A = B" using * by auto |
|
196 qed |
|
197 then show "A \<equiv> B" by (rule eq_reflection) |
|
198 qed |
|
199 |
|
200 ML {* |
|
201 fun atomize_thm thm = |
|
202 let |
|
203 val thm' = Thm.freezeT (forall_intr_vars thm) |
|
204 val thm'' = ObjectLogic.atomize (cprop_of thm') |
|
205 in |
|
206 @{thm equal_elim_rule1} OF [thm'', thm'] |
|
207 end |
|
208 *} |
|
209 |
|
210 section {* infrastructure about id *} |
|
211 |
|
212 lemma prod_fun_id: "prod_fun id id \<equiv> id" |
|
213 by (rule eq_reflection) (simp add: prod_fun_def) |
|
214 |
|
215 lemma map_id: "map id \<equiv> id" |
|
216 apply (rule eq_reflection) |
|
217 apply (rule ext) |
|
218 apply (rule_tac list="x" in list.induct) |
|
219 apply (simp_all) |
|
220 done |
|
221 |
|
222 lemmas id_simps = |
|
223 FUN_MAP_I[THEN eq_reflection] |
|
224 id_apply[THEN eq_reflection] |
|
225 id_def[THEN eq_reflection,symmetric] |
|
226 prod_fun_id map_id |
|
227 |
|
228 ML {* |
|
229 fun simp_ids thm = |
|
230 MetaSimplifier.rewrite_rule @{thms id_simps} thm |
|
231 *} |
|
232 |
|
233 section {* Debugging infrastructure for testing tactics *} |
|
234 |
|
235 ML {* |
|
236 fun my_print_tac ctxt s i thm = |
|
237 let |
|
238 val prem_str = nth (prems_of thm) (i - 1) |
|
239 |> Syntax.string_of_term ctxt |
|
240 handle Subscript => "no subgoal" |
|
241 val _ = tracing (s ^ "\n" ^ prem_str) |
|
242 in |
|
243 Seq.single thm |
|
244 end *} |
|
245 |
|
246 |
|
247 ML {* |
|
248 fun DT ctxt s tac i thm = |
|
249 let |
|
250 val before_goal = nth (prems_of thm) (i - 1) |
|
251 |> Syntax.string_of_term ctxt |
|
252 val before_msg = ["before: " ^ s, before_goal, "after: " ^ s] |
|
253 |> cat_lines |
|
254 in |
|
255 EVERY [tac i, my_print_tac ctxt before_msg i] thm |
|
256 end |
|
257 |
|
258 fun NDT ctxt s tac thm = tac thm |
|
259 *} |
|
260 |
|
261 |
|
262 section {* Infrastructure about definitions *} |
|
263 |
|
264 (* Does the same as 'subst' in a given theorem *) |
|
265 ML {* |
|
266 fun eqsubst_thm ctxt thms thm = |
|
267 let |
|
268 val goalstate = Goal.init (Thm.cprop_of thm) |
|
269 val a' = case (SINGLE (EqSubst.eqsubst_tac ctxt [0] thms 1) goalstate) of |
|
270 NONE => error "eqsubst_thm" |
|
271 | SOME th => cprem_of th 1 |
|
272 val tac = (EqSubst.eqsubst_tac ctxt [0] thms 1) THEN simp_tac HOL_ss 1 |
|
273 val goal = Logic.mk_equals (term_of (Thm.cprop_of thm), term_of a'); |
|
274 val cgoal = cterm_of (ProofContext.theory_of ctxt) goal |
|
275 val rt = Goal.prove_internal [] cgoal (fn _ => tac); |
|
276 in |
|
277 @{thm equal_elim_rule1} OF [rt, thm] |
|
278 end |
|
279 *} |
|
280 |
|
281 (* expects atomized definitions *) |
|
282 ML {* |
|
283 fun add_lower_defs_aux lthy thm = |
|
284 let |
|
285 val e1 = @{thm fun_cong} OF [thm]; |
|
286 val f = eqsubst_thm lthy @{thms fun_map.simps} e1; |
|
287 val g = simp_ids f |
|
288 in |
|
289 (simp_ids thm) :: (add_lower_defs_aux lthy g) |
|
290 end |
|
291 handle _ => [simp_ids thm] |
|
292 *} |
|
293 |
|
294 ML {* |
|
295 fun add_lower_defs lthy def = |
|
296 let |
|
297 val def_pre_sym = symmetric def |
|
298 val def_atom = atomize_thm def_pre_sym |
|
299 val defs_all = add_lower_defs_aux lthy def_atom |
|
300 in |
|
301 map Thm.varifyT defs_all |
|
302 end |
|
303 *} |
|
304 |
|
305 section {* Infrastructure for collecting theorems for starting the lifting *} |
|
306 |
|
307 ML {* |
|
308 fun lookup_quot_data lthy qty = |
|
309 let |
|
310 val qty_name = fst (dest_Type qty) |
|
311 val SOME quotdata = quotdata_lookup lthy qty_name |
|
312 (* cu: Changed the lookup\<dots>not sure whether this works *) |
|
313 (* TODO: Should no longer be needed *) |
|
314 val rty = Logic.unvarifyT (#rtyp quotdata) |
|
315 val rel = #rel quotdata |
|
316 val rel_eqv = #equiv_thm quotdata |
|
317 val rel_refl = @{thm EQUIV_REFL} OF [rel_eqv] |
|
318 in |
|
319 (rty, rel, rel_refl, rel_eqv) |
|
320 end |
|
321 *} |
|
322 |
|
323 ML {* |
|
324 fun lookup_quot_thms lthy qty_name = |
|
325 let |
|
326 val thy = ProofContext.theory_of lthy; |
|
327 val trans2 = PureThy.get_thm thy ("QUOT_TYPE_I_" ^ qty_name ^ ".R_trans2") |
|
328 val reps_same = PureThy.get_thm thy ("QUOT_TYPE_I_" ^ qty_name ^ ".REPS_same") |
|
329 val absrep = PureThy.get_thm thy ("QUOT_TYPE_I_" ^ qty_name ^ ".thm10") |
|
330 val quot = PureThy.get_thm thy ("QUOTIENT_" ^ qty_name) |
|
331 in |
|
332 (trans2, reps_same, absrep, quot) |
|
333 end |
|
334 *} |
|
335 |
|
336 ML {* |
|
337 fun lookup_quot_consts defs = |
|
338 let |
|
339 fun dest_term (a $ b) = (a, b); |
|
340 val def_terms = map (snd o Logic.dest_equals o concl_of) defs; |
|
341 in |
|
342 map (fst o dest_Const o snd o dest_term) def_terms |
|
343 end |
|
344 *} |
|
345 |
|
346 section {* Infrastructure for special quotient identity *} |
|
347 |
|
348 definition |
|
349 "qid TYPE('a) TYPE('b) x \<equiv> x" |
|
350 |
|
351 ML {* |
|
352 fun get_typ_aux (Type ("itself", [T])) = T |
|
353 fun get_typ (Const ("TYPE", T)) = get_typ_aux T |
|
354 fun get_tys (Const (@{const_name "qid"},_) $ ty1 $ ty2) = |
|
355 (get_typ ty1, get_typ ty2) |
|
356 |
|
357 fun is_qid (Const (@{const_name "qid"},_) $ _ $ _) = true |
|
358 | is_qid _ = false |
|
359 |
|
360 |
|
361 fun mk_itself ty = Type ("itself", [ty]) |
|
362 fun mk_TYPE ty = Const ("TYPE", mk_itself ty) |
|
363 fun mk_qid (rty, qty, trm) = |
|
364 Const (@{const_name "qid"}, [mk_itself rty, mk_itself qty, dummyT] ---> dummyT) |
|
365 $ mk_TYPE rty $ mk_TYPE qty $ trm |
|
366 *} |
|
367 |
|
368 ML {* |
|
369 fun insertion_aux rtrm qtrm = |
|
370 case (rtrm, qtrm) of |
|
371 (Abs (x, ty, t), Abs (x', ty', t')) => |
|
372 let |
|
373 val (y, s) = Term.dest_abs (x, ty, t) |
|
374 val (_, s') = Term.dest_abs (x', ty', t') |
|
375 val yvar = Free (y, ty) |
|
376 val result = Term.lambda_name (y, yvar) (insertion_aux s s') |
|
377 in |
|
378 if ty = ty' |
|
379 then result |
|
380 else mk_qid (ty, ty', result) |
|
381 end |
|
382 | (t1 $ t2, t1' $ t2') => |
|
383 let |
|
384 val rty = fastype_of rtrm |
|
385 val qty = fastype_of qtrm |
|
386 val subtrm1 = insertion_aux t1 t1' |
|
387 val subtrm2 = insertion_aux t2 t2' |
|
388 in |
|
389 if rty = qty |
|
390 then subtrm1 $ subtrm2 |
|
391 else mk_qid (rty, qty, subtrm1 $ subtrm2) |
|
392 end |
|
393 | (Free (_, ty), Free (_, ty')) => |
|
394 if ty = ty' |
|
395 then rtrm |
|
396 else mk_qid (ty, ty', rtrm) |
|
397 | (Const (s, ty), Const (s', ty')) => |
|
398 if s = s' andalso ty = ty' |
|
399 then rtrm |
|
400 else mk_qid (ty, ty', rtrm) |
|
401 | (_, _) => raise (LIFT_MATCH "insertion") |
|
402 *} |
|
403 |
|
404 section {* Regularization *} |
|
405 |
|
406 (* |
|
407 Regularizing an rtrm means: |
|
408 - quantifiers over a type that needs lifting are replaced by |
|
409 bounded quantifiers, for example: |
|
410 \<forall>x. P \<Longrightarrow> \<forall>x \<in> (Respects R). P / All (Respects R) P |
|
411 |
|
412 the relation R is given by the rty and qty; |
|
413 |
|
414 - abstractions over a type that needs lifting are replaced |
|
415 by bounded abstractions: |
|
416 \<lambda>x. P \<Longrightarrow> Ball (Respects R) (\<lambda>x. P) |
|
417 |
|
418 - equalities over the type being lifted are replaced by |
|
419 corresponding relations: |
|
420 A = B \<Longrightarrow> A \<approx> B |
|
421 |
|
422 example with more complicated types of A, B: |
|
423 A = B \<Longrightarrow> (op = \<Longrightarrow> op \<approx>) A B |
|
424 *) |
|
425 |
|
426 ML {* |
|
427 (* builds the relation that is the argument of respects *) |
|
428 fun mk_resp_arg lthy (rty, qty) = |
|
429 let |
|
430 val thy = ProofContext.theory_of lthy |
|
431 in |
|
432 if rty = qty |
|
433 then HOLogic.eq_const rty |
|
434 else |
|
435 case (rty, qty) of |
|
436 (Type (s, tys), Type (s', tys')) => |
|
437 if s = s' |
|
438 then let |
|
439 val SOME map_info = maps_lookup thy s |
|
440 val args = map (mk_resp_arg lthy) (tys ~~ tys') |
|
441 in |
|
442 list_comb (Const (#relfun map_info, dummyT), args) |
|
443 end |
|
444 else let |
|
445 val SOME qinfo = quotdata_lookup_thy thy s' |
|
446 (* FIXME: check in this case that the rty and qty *) |
|
447 (* FIXME: correspond to each other *) |
|
448 val (s, _) = dest_Const (#rel qinfo) |
|
449 (* FIXME: the relation should only be the string *) |
|
450 (* FIXME: and the type needs to be calculated as below; *) |
|
451 (* FIXME: maybe one should actually have a term *) |
|
452 (* FIXME: and one needs to force it to have this type *) |
|
453 in |
|
454 Const (s, rty --> rty --> @{typ bool}) |
|
455 end |
|
456 | _ => HOLogic.eq_const dummyT |
|
457 (* FIXME: check that the types correspond to each other? *) |
|
458 end |
|
459 *} |
|
460 |
|
461 ML {* |
|
462 val mk_babs = Const (@{const_name "Babs"}, dummyT) |
|
463 val mk_ball = Const (@{const_name "Ball"}, dummyT) |
|
464 val mk_bex = Const (@{const_name "Bex"}, dummyT) |
|
465 val mk_resp = Const (@{const_name Respects}, dummyT) |
|
466 *} |
|
467 |
|
468 ML {* |
|
469 (* - applies f to the subterm of an abstraction, *) |
|
470 (* otherwise to the given term, *) |
|
471 (* - used by regularize, therefore abstracted *) |
|
472 (* variables do not have to be treated specially *) |
|
473 |
|
474 fun apply_subt f trm = |
|
475 case trm of |
|
476 (Abs (x, T, t)) => Abs (x, T, f t) |
|
477 | _ => f trm |
|
478 |
|
479 (* the major type of All and Ex quantifiers *) |
|
480 fun qnt_typ ty = domain_type (domain_type ty) |
|
481 *} |
|
482 |
|
483 ML {* |
|
484 (* produces a regularized version of trm *) |
|
485 (* - the result is still not completely typed *) |
|
486 (* - does not need any special treatment of *) |
|
487 (* bound variables *) |
|
488 |
|
489 fun regularize_trm lthy trm = |
|
490 case trm of |
|
491 (Const (@{const_name "qid"},_) $ rty' $ qty' $ Abs (x, ty, t)) => |
|
492 let |
|
493 val rty = get_typ rty' |
|
494 val qty = get_typ qty' |
|
495 val subtrm = regularize_trm lthy t |
|
496 in |
|
497 mk_qid (rty, qty, mk_babs $ (mk_resp $ mk_resp_arg lthy (rty, qty)) $ subtrm) |
|
498 end |
|
499 | (Const (@{const_name "qid"},_) $ rty' $ qty' $ (Const (@{const_name "All"}, ty) $ t)) => |
|
500 let |
|
501 val subtrm = apply_subt (regularize_trm lthy) t |
|
502 in |
|
503 if ty = ty' |
|
504 then Const (@{const_name "All"}, ty) $ subtrm |
|
505 else mk_ball $ (mk_resp $ mk_resp_arg lthy (qnt_typ ty, qnt_typ ty')) $ subtrm |
|
506 end |
|
507 | (Const (@{const_name "Ex"}, ty) $ t, Const (@{const_name "Ex"}, ty') $ t') => |
|
508 let |
|
509 val subtrm = apply_subt (regularize_trm lthy) t t' |
|
510 in |
|
511 if ty = ty' |
|
512 then Const (@{const_name "Ex"}, ty) $ subtrm |
|
513 else mk_bex $ (mk_resp $ mk_resp_arg lthy (qnt_typ ty, qnt_typ ty')) $ subtrm |
|
514 end |
|
515 (* FIXME: Should = only be replaced, when fully applied? *) |
|
516 (* Then there must be a 2nd argument *) |
|
517 | (Const (@{const_name "op ="}, ty) $ t, Const (@{const_name "op ="}, ty') $ t') => |
|
518 let |
|
519 val subtrm = regularize_trm lthy t t' |
|
520 in |
|
521 if ty = ty' |
|
522 then Const (@{const_name "op ="}, ty) $ subtrm |
|
523 else mk_resp_arg lthy (domain_type ty, domain_type ty') $ subtrm |
|
524 end |
|
525 | (t1 $ t2, t1' $ t2') => |
|
526 (regularize_trm lthy t1 t1') $ (regularize_trm lthy t2 t2') |
|
527 | (Free (x, ty), Free (x', ty')) => |
|
528 (* this case cannot arrise as we start with two fully atomized terms *) |
|
529 raise (LIFT_MATCH "regularize (frees)") |
|
530 | (Bound i, Bound i') => |
|
531 if i = i' |
|
532 then rtrm |
|
533 else raise (LIFT_MATCH "regularize (bounds)") |
|
534 | (Const (s, ty), Const (s', ty')) => |
|
535 if s = s' andalso ty = ty' |
|
536 then rtrm |
|
537 else rtrm (* FIXME: check correspondence according to definitions *) |
|
538 | (rt, qt) => |
|
539 raise (LIFT_MATCH "regularize (default)") |
|
540 *} |
|
541 |
|
542 (* |
|
543 FIXME / TODO: needs to be adapted |
|
544 |
|
545 To prove that the raw theorem implies the regularised one, |
|
546 we try in order: |
|
547 |
|
548 - Reflexivity of the relation |
|
549 - Assumption |
|
550 - Elimnating quantifiers on both sides of toplevel implication |
|
551 - Simplifying implications on both sides of toplevel implication |
|
552 - Ball (Respects ?E) ?P = All ?P |
|
553 - (\<And>x. ?R x \<Longrightarrow> ?P x \<longrightarrow> ?Q x) \<Longrightarrow> All ?P \<longrightarrow> Ball ?R ?Q |
|
554 |
|
555 *) |
|
556 |
|
557 (* FIXME: they should be in in the new Isabelle *) |
|
558 lemma [mono]: |
|
559 "(\<And>x. P x \<longrightarrow> Q x) \<Longrightarrow> (Ex P) \<longrightarrow> (Ex Q)" |
|
560 by blast |
|
561 |
|
562 lemma [mono]: "P \<longrightarrow> Q \<Longrightarrow> \<not>Q \<longrightarrow> \<not>P" |
|
563 by auto |
|
564 |
|
565 (* FIXME: OPTION_EQUIV, PAIR_EQUIV, ... *) |
|
566 ML {* |
|
567 fun equiv_tac rel_eqvs = |
|
568 REPEAT_ALL_NEW (FIRST' |
|
569 [resolve_tac rel_eqvs, |
|
570 rtac @{thm IDENTITY_EQUIV}, |
|
571 rtac @{thm LIST_EQUIV}]) |
|
572 *} |
|
573 |
|
574 ML {* |
|
575 fun ball_reg_eqv_simproc rel_eqvs ss redex = |
|
576 let |
|
577 val ctxt = Simplifier.the_context ss |
|
578 val thy = ProofContext.theory_of ctxt |
|
579 in |
|
580 case redex of |
|
581 (ogl as ((Const (@{const_name "Ball"}, _)) $ |
|
582 ((Const (@{const_name "Respects"}, _)) $ R) $ P1)) => |
|
583 (let |
|
584 val gl = Const (@{const_name "EQUIV"}, dummyT) $ R; |
|
585 val glc = HOLogic.mk_Trueprop (Syntax.check_term ctxt gl); |
|
586 val eqv = Goal.prove ctxt [] [] glc (fn _ => equiv_tac rel_eqvs 1); |
|
587 val thm = (@{thm eq_reflection} OF [@{thm ball_reg_eqv} OF [eqv]]); |
|
588 (* val _ = tracing (Syntax.string_of_term ctxt (prop_of thm)); *) |
|
589 in |
|
590 SOME thm |
|
591 end |
|
592 handle _ => NONE |
|
593 ) |
|
594 | _ => NONE |
|
595 end |
|
596 *} |
|
597 |
|
598 ML {* |
|
599 fun bex_reg_eqv_simproc rel_eqvs ss redex = |
|
600 let |
|
601 val ctxt = Simplifier.the_context ss |
|
602 val thy = ProofContext.theory_of ctxt |
|
603 in |
|
604 case redex of |
|
605 (ogl as ((Const (@{const_name "Bex"}, _)) $ |
|
606 ((Const (@{const_name "Respects"}, _)) $ R) $ P1)) => |
|
607 (let |
|
608 val gl = Const (@{const_name "EQUIV"}, dummyT) $ R; |
|
609 val glc = HOLogic.mk_Trueprop (Syntax.check_term ctxt gl); |
|
610 val eqv = Goal.prove ctxt [] [] glc (fn _ => equiv_tac rel_eqvs 1); |
|
611 val thm = (@{thm eq_reflection} OF [@{thm bex_reg_eqv} OF [eqv]]); |
|
612 (* val _ = tracing (Syntax.string_of_term ctxt (prop_of thm)); *) |
|
613 in |
|
614 SOME thm |
|
615 end |
|
616 handle _ => NONE |
|
617 ) |
|
618 | _ => NONE |
|
619 end |
|
620 *} |
|
621 |
|
622 ML {* |
|
623 fun prep_trm thy (x, (T, t)) = |
|
624 (cterm_of thy (Var (x, T)), cterm_of thy t) |
|
625 |
|
626 fun prep_ty thy (x, (S, ty)) = |
|
627 (ctyp_of thy (TVar (x, S)), ctyp_of thy ty) |
|
628 *} |
|
629 |
|
630 ML {* |
|
631 fun matching_prs thy pat trm = |
|
632 let |
|
633 val univ = Unify.matchers thy [(pat, trm)] |
|
634 val SOME (env, _) = Seq.pull univ |
|
635 val tenv = Vartab.dest (Envir.term_env env) |
|
636 val tyenv = Vartab.dest (Envir.type_env env) |
|
637 in |
|
638 (map (prep_ty thy) tyenv, map (prep_trm thy) tenv) |
|
639 end |
|
640 *} |
|
641 |
|
642 ML {* |
|
643 fun ball_reg_eqv_range_simproc rel_eqvs ss redex = |
|
644 let |
|
645 val ctxt = Simplifier.the_context ss |
|
646 val thy = ProofContext.theory_of ctxt |
|
647 in |
|
648 case redex of |
|
649 (ogl as ((Const (@{const_name "Ball"}, _)) $ |
|
650 ((Const (@{const_name "Respects"}, _)) $ ((Const (@{const_name "FUN_REL"}, _)) $ R1 $ R2)) $ _)) => |
|
651 (let |
|
652 val gl = Const (@{const_name "EQUIV"}, dummyT) $ R2; |
|
653 val glc = HOLogic.mk_Trueprop (Syntax.check_term ctxt gl); |
|
654 val _ = tracing (Syntax.string_of_term ctxt glc); |
|
655 val eqv = Goal.prove ctxt [] [] glc (fn _ => equiv_tac rel_eqvs 1); |
|
656 val thm = (@{thm eq_reflection} OF [@{thm ball_reg_eqv_range} OF [eqv]]); |
|
657 val R1c = cterm_of thy R1; |
|
658 val thmi = Drule.instantiate' [] [SOME R1c] thm; |
|
659 (* val _ = tracing (Syntax.string_of_term ctxt (prop_of thmi)); *) |
|
660 val inst = matching_prs thy (term_of (Thm.lhs_of thmi)) ogl |
|
661 val _ = tracing "AAA"; |
|
662 val thm2 = Drule.eta_contraction_rule (Drule.instantiate inst thmi); |
|
663 val _ = tracing (Syntax.string_of_term ctxt (prop_of thm2)); |
|
664 in |
|
665 SOME thm2 |
|
666 end |
|
667 handle _ => NONE |
|
668 |
|
669 ) |
|
670 | _ => NONE |
|
671 end |
|
672 *} |
|
673 |
|
674 ML {* |
|
675 fun bex_reg_eqv_range_simproc rel_eqvs ss redex = |
|
676 let |
|
677 val ctxt = Simplifier.the_context ss |
|
678 val thy = ProofContext.theory_of ctxt |
|
679 in |
|
680 case redex of |
|
681 (ogl as ((Const (@{const_name "Bex"}, _)) $ |
|
682 ((Const (@{const_name "Respects"}, _)) $ ((Const (@{const_name "FUN_REL"}, _)) $ R1 $ R2)) $ _)) => |
|
683 (let |
|
684 val gl = Const (@{const_name "EQUIV"}, dummyT) $ R2; |
|
685 val glc = HOLogic.mk_Trueprop (Syntax.check_term ctxt gl); |
|
686 val _ = tracing (Syntax.string_of_term ctxt glc); |
|
687 val eqv = Goal.prove ctxt [] [] glc (fn _ => equiv_tac rel_eqvs 1); |
|
688 val thm = (@{thm eq_reflection} OF [@{thm bex_reg_eqv_range} OF [eqv]]); |
|
689 val R1c = cterm_of thy R1; |
|
690 val thmi = Drule.instantiate' [] [SOME R1c] thm; |
|
691 (* val _ = tracing (Syntax.string_of_term ctxt (prop_of thmi)); *) |
|
692 val inst = matching_prs thy (term_of (Thm.lhs_of thmi)) ogl |
|
693 val _ = tracing "AAA"; |
|
694 val thm2 = Drule.eta_contraction_rule (Drule.instantiate inst thmi); |
|
695 val _ = tracing (Syntax.string_of_term ctxt (prop_of thm2)); |
|
696 in |
|
697 SOME thm2 |
|
698 end |
|
699 handle _ => NONE |
|
700 |
|
701 ) |
|
702 | _ => NONE |
|
703 end |
|
704 *} |
|
705 |
|
706 lemma eq_imp_rel: "EQUIV R \<Longrightarrow> a = b \<longrightarrow> R a b" |
|
707 by (simp add: EQUIV_REFL) |
|
708 |
|
709 ML {* |
|
710 fun regularize_tac ctxt rel_eqvs = |
|
711 let |
|
712 val pat1 = [@{term "Ball (Respects R) P"}]; |
|
713 val pat2 = [@{term "Bex (Respects R) P"}]; |
|
714 val pat3 = [@{term "Ball (Respects (R1 ===> R2)) P"}]; |
|
715 val pat4 = [@{term "Bex (Respects (R1 ===> R2)) P"}]; |
|
716 val thy = ProofContext.theory_of ctxt |
|
717 val simproc1 = Simplifier.simproc_i thy "" pat1 (K (ball_reg_eqv_simproc rel_eqvs)) |
|
718 val simproc2 = Simplifier.simproc_i thy "" pat2 (K (bex_reg_eqv_simproc rel_eqvs)) |
|
719 val simproc3 = Simplifier.simproc_i thy "" pat3 (K (ball_reg_eqv_range_simproc rel_eqvs)) |
|
720 val simproc4 = Simplifier.simproc_i thy "" pat4 (K (bex_reg_eqv_range_simproc rel_eqvs)) |
|
721 val simp_ctxt = (Simplifier.context ctxt empty_ss) addsimprocs [simproc1, simproc2, simproc3, simproc4] |
|
722 (* TODO: Make sure that there are no LIST_REL, PAIR_REL etc involved *) |
|
723 val eq_eqvs = map (fn x => @{thm eq_imp_rel} OF [x]) rel_eqvs |
|
724 in |
|
725 ObjectLogic.full_atomize_tac THEN' |
|
726 simp_tac simp_ctxt THEN' |
|
727 REPEAT_ALL_NEW (FIRST' [ |
|
728 rtac @{thm ball_reg_right}, |
|
729 rtac @{thm bex_reg_left}, |
|
730 resolve_tac (Inductive.get_monos ctxt), |
|
731 rtac @{thm ball_all_comm}, |
|
732 rtac @{thm bex_ex_comm}, |
|
733 resolve_tac eq_eqvs, |
|
734 simp_tac simp_ctxt |
|
735 ]) |
|
736 end |
|
737 *} |
|
738 |
|
739 section {* Injections of REP and ABSes *} |
|
740 |
|
741 (* |
|
742 Injecting REPABS means: |
|
743 |
|
744 For abstractions: |
|
745 * If the type of the abstraction doesn't need lifting we recurse. |
|
746 * If it does we add RepAbs around the whole term and check if the |
|
747 variable needs lifting. |
|
748 * If it doesn't then we recurse |
|
749 * If it does we recurse and put 'RepAbs' around all occurences |
|
750 of the variable in the obtained subterm. This in combination |
|
751 with the RepAbs above will let us change the type of the |
|
752 abstraction with rewriting. |
|
753 For applications: |
|
754 * If the term is 'Respects' applied to anything we leave it unchanged |
|
755 * If the term needs lifting and the head is a constant that we know |
|
756 how to lift, we put a RepAbs and recurse |
|
757 * If the term needs lifting and the head is a free applied to subterms |
|
758 (if it is not applied we treated it in Abs branch) then we |
|
759 put RepAbs and recurse |
|
760 * Otherwise just recurse. |
|
761 *) |
|
762 |
|
763 ML {* |
|
764 fun mk_repabs lthy (T, T') trm = |
|
765 Quotient_Def.get_fun repF lthy (T, T') |
|
766 $ (Quotient_Def.get_fun absF lthy (T, T') $ trm) |
|
767 *} |
|
768 |
|
769 ML {* |
|
770 (* bound variables need to be treated properly, *) |
|
771 (* as the type of subterms need to be calculated *) |
|
772 |
|
773 fun inj_repabs_trm lthy (rtrm, qtrm) = |
|
774 let |
|
775 val rty = fastype_of rtrm |
|
776 val qty = fastype_of qtrm |
|
777 in |
|
778 case (rtrm, qtrm) of |
|
779 (Const (@{const_name "Ball"}, T) $ r $ t, Const (@{const_name "All"}, _) $ t') => |
|
780 Const (@{const_name "Ball"}, T) $ r $ (inj_repabs_trm lthy (t, t')) |
|
781 | (Const (@{const_name "Bex"}, T) $ r $ t, Const (@{const_name "Ex"}, _) $ t') => |
|
782 Const (@{const_name "Bex"}, T) $ r $ (inj_repabs_trm lthy (t, t')) |
|
783 | (Const (@{const_name "Babs"}, T) $ r $ t, t') => |
|
784 Const (@{const_name "Babs"}, T) $ r $ (inj_repabs_trm lthy (t, t')) |
|
785 | (Abs (x, T, t), Abs (x', T', t')) => |
|
786 let |
|
787 val (y, s) = Term.dest_abs (x, T, t) |
|
788 val (_, s') = Term.dest_abs (x', T', t') |
|
789 val yvar = Free (y, T) |
|
790 val result = Term.lambda_name (y, yvar) (inj_repabs_trm lthy (s, s')) |
|
791 in |
|
792 if rty = qty |
|
793 then result |
|
794 else mk_repabs lthy (rty, qty) result |
|
795 end |
|
796 | _ => |
|
797 (* FIXME / TODO: this is a case that needs to be looked at *) |
|
798 (* - variables get a rep-abs insde and outside an application *) |
|
799 (* - constants only get a rep-abs on the outside of the application *) |
|
800 (* - applications get a rep-abs insde and outside an application *) |
|
801 let |
|
802 val (rhead, rargs) = strip_comb rtrm |
|
803 val (qhead, qargs) = strip_comb qtrm |
|
804 val rargs' = map (inj_repabs_trm lthy) (rargs ~~ qargs) |
|
805 in |
|
806 if rty = qty |
|
807 then |
|
808 case (rhead, qhead) of |
|
809 (Free (_, T), Free (_, T')) => |
|
810 if T = T' then list_comb (rhead, rargs') |
|
811 else list_comb (mk_repabs lthy (T, T') rhead, rargs') |
|
812 | _ => list_comb (rhead, rargs') |
|
813 else |
|
814 case (rhead, qhead, length rargs') of |
|
815 (Const _, Const _, 0) => mk_repabs lthy (rty, qty) rhead |
|
816 | (Free (_, T), Free (_, T'), 0) => mk_repabs lthy (T, T') rhead |
|
817 | (Const _, Const _, _) => mk_repabs lthy (rty, qty) (list_comb (rhead, rargs')) |
|
818 | (Free (x, T), Free (x', T'), _) => |
|
819 mk_repabs lthy (rty, qty) (list_comb (mk_repabs lthy (T, T') rhead, rargs')) |
|
820 | (Abs _, Abs _, _ ) => |
|
821 mk_repabs lthy (rty, qty) (list_comb (inj_repabs_trm lthy (rhead, qhead), rargs')) |
|
822 | _ => raise (LIFT_MATCH "injection") |
|
823 end |
|
824 end |
|
825 *} |
|
826 |
|
827 section {* RepAbs Injection Tactic *} |
|
828 |
|
829 ML {* |
|
830 fun stripped_term_of ct = |
|
831 ct |> term_of |> HOLogic.dest_Trueprop |
|
832 *} |
|
833 |
|
834 ML {* |
|
835 fun instantiate_tac thm = |
|
836 Subgoal.FOCUS (fn {concl, ...} => |
|
837 let |
|
838 val pat = Drule.strip_imp_concl (cprop_of thm) |
|
839 val insts = Thm.match (pat, concl) |
|
840 in |
|
841 rtac (Drule.instantiate insts thm) 1 |
|
842 end |
|
843 handle _ => no_tac) |
|
844 *} |
|
845 |
|
846 ML {* |
|
847 fun quotient_tac quot_thms = |
|
848 REPEAT_ALL_NEW (FIRST' |
|
849 [rtac @{thm FUN_QUOTIENT}, |
|
850 resolve_tac quot_thms, |
|
851 rtac @{thm IDENTITY_QUOTIENT}, |
|
852 (* For functional identity quotients, (op = ---> op =) *) |
|
853 (* TODO: think about the other way around, if we need to shorten the relation *) |
|
854 CHANGED o (simp_tac (HOL_ss addsimps @{thms id_simps}))]) |
|
855 *} |
|
856 |
|
857 lemma FUN_REL_I: |
|
858 assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)" |
|
859 shows "(R1 ===> R2) f g" |
|
860 using a by (simp add: FUN_REL.simps) |
|
861 |
|
862 ML {* |
|
863 val lambda_res_tac = |
|
864 Subgoal.FOCUS (fn {concl, ...} => |
|
865 case (stripped_term_of concl) of |
|
866 (_ $ (Abs _) $ (Abs _)) => rtac @{thm FUN_REL_I} 1 |
|
867 | _ => no_tac) |
|
868 *} |
|
869 |
|
870 ML {* |
|
871 val weak_lambda_res_tac = |
|
872 Subgoal.FOCUS (fn {concl, ...} => |
|
873 case (stripped_term_of concl) of |
|
874 (_ $ _ $ (Abs _)) => rtac @{thm FUN_REL_I} 1 |
|
875 | (_ $ (Abs _) $ _) => rtac @{thm FUN_REL_I} 1 |
|
876 | _ => no_tac) |
|
877 *} |
|
878 |
|
879 ML {* |
|
880 val ball_rsp_tac = |
|
881 Subgoal.FOCUS (fn {concl, ...} => |
|
882 case (stripped_term_of concl) of |
|
883 (_ $ (Const (@{const_name Ball}, _) $ _) |
|
884 $ (Const (@{const_name Ball}, _) $ _)) => rtac @{thm FUN_REL_I} 1 |
|
885 |_ => no_tac) |
|
886 *} |
|
887 |
|
888 ML {* |
|
889 val bex_rsp_tac = |
|
890 Subgoal.FOCUS (fn {concl, context = ctxt, ...} => |
|
891 case (stripped_term_of concl) of |
|
892 (_ $ (Const (@{const_name Bex}, _) $ _) |
|
893 $ (Const (@{const_name Bex}, _) $ _)) => rtac @{thm FUN_REL_I} 1 |
|
894 | _ => no_tac) |
|
895 *} |
|
896 |
|
897 ML {* (* Legacy *) |
|
898 fun needs_lift (rty as Type (rty_s, _)) ty = |
|
899 case ty of |
|
900 Type (s, tys) => (s = rty_s) orelse (exists (needs_lift rty) tys) |
|
901 | _ => false |
|
902 |
|
903 *} |
|
904 |
|
905 ML {* |
|
906 fun APPLY_RSP_TAC rty = |
|
907 Subgoal.FOCUS (fn {concl, ...} => |
|
908 case (stripped_term_of concl) of |
|
909 (_ $ (f $ _) $ (_ $ _)) => |
|
910 let |
|
911 val pat = Drule.strip_imp_concl (cprop_of @{thm APPLY_RSP}); |
|
912 val insts = Thm.match (pat, concl) |
|
913 in |
|
914 if needs_lift rty (fastype_of f) |
|
915 then rtac (Drule.instantiate insts @{thm APPLY_RSP}) 1 |
|
916 else no_tac |
|
917 end |
|
918 | _ => no_tac) |
|
919 *} |
|
920 |
|
921 ML {* |
|
922 fun SOLVES' tac = tac THEN_ALL_NEW (fn _ => no_tac) |
|
923 *} |
|
924 |
|
925 (* |
|
926 To prove that the regularised theorem implies the abs/rep injected, |
|
927 we try: |
|
928 |
|
929 1) theorems 'trans2' from the appropriate QUOT_TYPE |
|
930 2) remove lambdas from both sides: lambda_res_tac |
|
931 3) remove Ball/Bex from the right hand side |
|
932 4) use user-supplied RSP theorems |
|
933 5) remove rep_abs from the right side |
|
934 6) reflexivity of equality |
|
935 7) split applications of lifted type (apply_rsp) |
|
936 8) split applications of non-lifted type (cong_tac) |
|
937 9) apply extentionality |
|
938 A) reflexivity of the relation |
|
939 B) assumption |
|
940 (Lambdas under respects may have left us some assumptions) |
|
941 C) proving obvious higher order equalities by simplifying fun_rel |
|
942 (not sure if it is still needed?) |
|
943 D) unfolding lambda on one side |
|
944 E) simplifying (= ===> =) for simpler respectfulness |
|
945 |
|
946 *) |
|
947 |
|
948 ML {* |
|
949 fun inj_repabs_tac ctxt rty quot_thms rel_refl trans2 = |
|
950 (FIRST' [ |
|
951 (* "cong" rule of the of the relation / transitivity*) |
|
952 (* (op =) (R a b) (R c d) ----> \<lbrakk>R a c; R b d\<rbrakk> *) |
|
953 NDT ctxt "1" (resolve_tac trans2), |
|
954 |
|
955 (* (R1 ===> R2) (\<lambda>x\<dots>) (\<lambda>y\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (\<dots>x) (\<dots>y) *) |
|
956 NDT ctxt "2" (lambda_res_tac ctxt), |
|
957 |
|
958 (* (op =) (Ball\<dots>) (Ball\<dots>) ----> (op =) (\<dots>) (\<dots>) *) |
|
959 NDT ctxt "3" (rtac @{thm RES_FORALL_RSP}), |
|
960 |
|
961 (* (R1 ===> R2) (Ball\<dots>) (Ball\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (Ball\<dots>x) (Ball\<dots>y) *) |
|
962 NDT ctxt "4" (ball_rsp_tac ctxt), |
|
963 |
|
964 (* (op =) (Bex\<dots>) (Bex\<dots>) ----> (op =) (\<dots>) (\<dots>) *) |
|
965 NDT ctxt "5" (rtac @{thm RES_EXISTS_RSP}), |
|
966 |
|
967 (* (R1 ===> R2) (Bex\<dots>) (Bex\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (Bex\<dots>x) (Bex\<dots>y) *) |
|
968 NDT ctxt "6" (bex_rsp_tac ctxt), |
|
969 |
|
970 (* respectfulness of constants *) |
|
971 NDT ctxt "7" (resolve_tac (rsp_rules_get ctxt)), |
|
972 |
|
973 (* reflexivity of operators arising from Cong_tac *) |
|
974 NDT ctxt "8" (rtac @{thm refl}), |
|
975 |
|
976 (* R (\<dots>) (Rep (Abs \<dots>)) ----> R (\<dots>) (\<dots>) *) |
|
977 (* observe ---> *) |
|
978 NDT ctxt "9" ((instantiate_tac @{thm REP_ABS_RSP(1)} ctxt |
|
979 THEN' (RANGE [SOLVES' (quotient_tac quot_thms)]))), |
|
980 |
|
981 (* R (t $ \<dots>) (t' $ \<dots>) ----> APPLY_RSP provided type of t needs lifting *) |
|
982 NDT ctxt "A" ((APPLY_RSP_TAC rty ctxt THEN' |
|
983 (RANGE [SOLVES' (quotient_tac quot_thms), SOLVES' (quotient_tac quot_thms)]))), |
|
984 |
|
985 (* (op =) (t $ \<dots>) (t' $ \<dots>) ----> Cong provided type of t does not need lifting *) |
|
986 (* merge with previous tactic *) |
|
987 NDT ctxt "B" (Cong_Tac.cong_tac @{thm cong}), |
|
988 |
|
989 (* (op =) (\<lambda>x\<dots>) (\<lambda>x\<dots>) ----> (op =) (\<dots>) (\<dots>) *) |
|
990 NDT ctxt "C" (rtac @{thm ext}), |
|
991 |
|
992 (* reflexivity of the basic relations *) |
|
993 (* R \<dots> \<dots> *) |
|
994 NDT ctxt "D" (resolve_tac rel_refl), |
|
995 |
|
996 (* resolving with R x y assumptions *) |
|
997 NDT ctxt "E" (atac), |
|
998 |
|
999 (* seems not necessay:: NDT ctxt "F" (SOLVES' (simp_tac (HOL_ss addsimps @{thms FUN_REL.simps}))),*) |
|
1000 |
|
1001 (* (R1 ===> R2) (\<dots>) (\<lambda>y\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (\<dots>x) (\<dots>y) *) |
|
1002 (* (R1 ===> R2) (\<lambda>x\<dots>) (\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (\<dots>x) (\<dots>y) *) |
|
1003 (*NDT ctxt "G" (weak_lambda_res_tac ctxt),*) |
|
1004 |
|
1005 (* (op =) ===> (op =) \<Longrightarrow> (op =), needed in order to apply respectfulness theorems *) |
|
1006 (* global simplification *) |
|
1007 NDT ctxt "H" (CHANGED o (asm_full_simp_tac ((Simplifier.context ctxt empty_ss) addsimps @{thms eq_reflection[OF FUN_REL_EQ]})))]) |
|
1008 *} |
|
1009 |
|
1010 ML {* |
|
1011 fun all_inj_repabs_tac ctxt rty quot_thms rel_refl trans2 = |
|
1012 REPEAT_ALL_NEW (inj_repabs_tac ctxt rty quot_thms rel_refl trans2) |
|
1013 *} |
|
1014 |
|
1015 |
|
1016 section {* Cleaning of the theorem *} |
|
1017 |
|
1018 ML {* |
|
1019 fun applic_prs lthy absrep (rty, qty) = |
|
1020 let |
|
1021 fun mk_rep (T, T') tm = (Quotient_Def.get_fun repF lthy (T, T')) $ tm; |
|
1022 fun mk_abs (T, T') tm = (Quotient_Def.get_fun absF lthy (T, T')) $ tm; |
|
1023 val (raty, rgty) = Term.strip_type rty; |
|
1024 val (qaty, qgty) = Term.strip_type qty; |
|
1025 val vs = map (fn _ => "x") qaty; |
|
1026 val ((fname :: vfs), lthy') = Variable.variant_fixes ("f" :: vs) lthy; |
|
1027 val f = Free (fname, qaty ---> qgty); |
|
1028 val args = map Free (vfs ~~ qaty); |
|
1029 val rhs = list_comb(f, args); |
|
1030 val largs = map2 mk_rep (raty ~~ qaty) args; |
|
1031 val lhs = mk_abs (rgty, qgty) (list_comb((mk_rep (raty ---> rgty, qaty ---> qgty) f), largs)); |
|
1032 val llhs = Syntax.check_term lthy lhs; |
|
1033 val eq = Logic.mk_equals (llhs, rhs); |
|
1034 val ceq = cterm_of (ProofContext.theory_of lthy') eq; |
|
1035 val sctxt = HOL_ss addsimps (@{thms fun_map.simps id_simps} @ absrep); |
|
1036 val t = Goal.prove_internal [] ceq (fn _ => simp_tac sctxt 1) |
|
1037 val t_id = MetaSimplifier.rewrite_rule @{thms id_simps} t; |
|
1038 in |
|
1039 singleton (ProofContext.export lthy' lthy) t_id |
|
1040 end |
|
1041 *} |
|
1042 |
|
1043 ML {* |
|
1044 fun find_aps_all rtm qtm = |
|
1045 case (rtm, qtm) of |
|
1046 (Abs(_, T1, s1), Abs(_, T2, s2)) => |
|
1047 find_aps_all (subst_bound ((Free ("x", T1)), s1)) (subst_bound ((Free ("x", T2)), s2)) |
|
1048 | (((f1 as (Free (_, T1))) $ a1), ((f2 as (Free (_, T2))) $ a2)) => |
|
1049 let |
|
1050 val sub = (find_aps_all f1 f2) @ (find_aps_all a1 a2) |
|
1051 in |
|
1052 if T1 = T2 then sub else (T1, T2) :: sub |
|
1053 end |
|
1054 | ((f1 $ a1), (f2 $ a2)) => (find_aps_all f1 f2) @ (find_aps_all a1 a2) |
|
1055 | _ => []; |
|
1056 |
|
1057 fun find_aps rtm qtm = distinct (op =) (find_aps_all rtm qtm) |
|
1058 *} |
|
1059 |
|
1060 ML {* |
|
1061 fun allex_prs_tac lthy quot = |
|
1062 (EqSubst.eqsubst_tac lthy [0] @{thms FORALL_PRS[symmetric] EXISTS_PRS[symmetric]}) |
|
1063 THEN' (quotient_tac quot) |
|
1064 *} |
|
1065 |
|
1066 (* Rewrites the term with LAMBDA_PRS thm. |
|
1067 |
|
1068 Replaces: (Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) |
|
1069 with: f |
|
1070 |
|
1071 It proves the QUOTIENT assumptions by calling quotient_tac |
|
1072 *) |
|
1073 ML {* |
|
1074 fun make_inst lhs t = |
|
1075 let |
|
1076 val _ $ (Abs (_, _, (f as Var (_, Type ("fun", [T, _]))) $ u)) = lhs; |
|
1077 val _ $ (Abs (_, _, g)) = t; |
|
1078 fun mk_abs i t = |
|
1079 if incr_boundvars i u aconv t then Bound i |
|
1080 else (case t of |
|
1081 t1 $ t2 => mk_abs i t1 $ mk_abs i t2 |
|
1082 | Abs (s, T, t') => Abs (s, T, mk_abs (i+1) t') |
|
1083 | Bound j => if i = j then error "make_inst" else t |
|
1084 | _ => t); |
|
1085 in (f, Abs ("x", T, mk_abs 0 g)) end; |
|
1086 |
|
1087 fun lambda_prs_conv1 ctxt quot_thms ctrm = |
|
1088 case (term_of ctrm) of ((Const (@{const_name "fun_map"}, _) $ r1 $ a2) $ (Abs _)) => |
|
1089 let |
|
1090 val (_, [ty_b, ty_a]) = dest_Type (fastype_of r1); |
|
1091 val (_, [ty_c, ty_d]) = dest_Type (fastype_of a2); |
|
1092 val thy = ProofContext.theory_of ctxt; |
|
1093 val [cty_a, cty_b, cty_c, cty_d] = map (ctyp_of thy) [ty_a, ty_b, ty_c, ty_d] |
|
1094 val tyinst = [SOME cty_a, SOME cty_b, SOME cty_c, SOME cty_d]; |
|
1095 val tinst = [NONE, NONE, SOME (cterm_of thy r1), NONE, SOME (cterm_of thy a2)] |
|
1096 val lpi = Drule.instantiate' tyinst tinst @{thm LAMBDA_PRS}; |
|
1097 val tac = |
|
1098 (compose_tac (false, lpi, 2)) THEN_ALL_NEW |
|
1099 (quotient_tac quot_thms); |
|
1100 val gc = Drule.strip_imp_concl (cprop_of lpi); |
|
1101 val t = Goal.prove_internal [] gc (fn _ => tac 1) |
|
1102 val te = @{thm eq_reflection} OF [t] |
|
1103 val ts = MetaSimplifier.rewrite_rule @{thms id_simps} te |
|
1104 val tl = Thm.lhs_of ts; |
|
1105 val (insp, inst) = make_inst (term_of tl) (term_of ctrm); |
|
1106 val ti = Drule.instantiate ([], [(cterm_of thy insp, cterm_of thy inst)]) ts; |
|
1107 (* val _ = writeln (Syntax.string_of_term @{context} (term_of (cprop_of ti)));*) |
|
1108 in |
|
1109 Conv.rewr_conv ti ctrm |
|
1110 end |
|
1111 *} |
|
1112 |
|
1113 (* quot stands for the QUOTIENT theorems: *) |
|
1114 (* could be potentially all of them *) |
|
1115 ML {* |
|
1116 fun lambda_prs_conv ctxt quot ctrm = |
|
1117 case (term_of ctrm) of |
|
1118 (Const (@{const_name "fun_map"}, _) $ _ $ _) $ (Abs _) => |
|
1119 (Conv.arg_conv (Conv.abs_conv (fn (_, ctxt) => lambda_prs_conv ctxt quot) ctxt) |
|
1120 then_conv (lambda_prs_conv1 ctxt quot)) ctrm |
|
1121 | _ $ _ => Conv.comb_conv (lambda_prs_conv ctxt quot) ctrm |
|
1122 | Abs _ => Conv.abs_conv (fn (_, ctxt) => lambda_prs_conv ctxt quot) ctxt ctrm |
|
1123 | _ => Conv.all_conv ctrm |
|
1124 *} |
|
1125 |
|
1126 ML {* |
|
1127 fun lambda_prs_tac ctxt quot = CSUBGOAL (fn (goal, i) => |
|
1128 CONVERSION |
|
1129 (Conv.params_conv ~1 (fn ctxt => |
|
1130 (Conv.prems_conv ~1 (lambda_prs_conv ctxt quot) then_conv |
|
1131 Conv.concl_conv ~1 (lambda_prs_conv ctxt quot))) ctxt) i) |
|
1132 *} |
|
1133 |
|
1134 ML {* |
|
1135 fun clean_tac lthy quot defs aps = |
|
1136 let |
|
1137 val lower = flat (map (add_lower_defs lthy) defs) |
|
1138 val meta_lower = map (fn x => @{thm eq_reflection} OF [x]) lower |
|
1139 val absrep = map (fn x => @{thm QUOTIENT_ABS_REP} OF [x]) quot |
|
1140 val reps_same = map (fn x => @{thm QUOTIENT_REL_REP} OF [x]) quot |
|
1141 val meta_reps_same = map (fn x => @{thm eq_reflection} OF [x]) reps_same |
|
1142 val simp_ctxt = (Simplifier.context lthy empty_ss) addsimps (meta_reps_same @ meta_lower) |
|
1143 val aps_thms = map (applic_prs lthy absrep) aps |
|
1144 in |
|
1145 EVERY' [lambda_prs_tac lthy quot, |
|
1146 TRY o simp_tac simp_ctxt, |
|
1147 TRY o REPEAT_ALL_NEW (allex_prs_tac lthy quot), |
|
1148 TRY o REPEAT_ALL_NEW (EqSubst.eqsubst_tac lthy [0] aps_thms), |
|
1149 TRY o rtac refl] |
|
1150 end |
|
1151 *} |
|
1152 |
|
1153 section {* Genralisation of free variables in a goal *} |
|
1154 |
|
1155 ML {* |
|
1156 fun inst_spec ctrm = |
|
1157 Drule.instantiate' [SOME (ctyp_of_term ctrm)] [NONE, SOME ctrm] @{thm spec} |
|
1158 |
|
1159 fun inst_spec_tac ctrms = |
|
1160 EVERY' (map (dtac o inst_spec) ctrms) |
|
1161 |
|
1162 fun all_list xs trm = |
|
1163 fold (fn (x, T) => fn t' => HOLogic.mk_all (x, T, t')) xs trm |
|
1164 |
|
1165 fun apply_under_Trueprop f = |
|
1166 HOLogic.dest_Trueprop #> f #> HOLogic.mk_Trueprop |
|
1167 |
|
1168 fun gen_frees_tac ctxt = |
|
1169 SUBGOAL (fn (concl, i) => |
|
1170 let |
|
1171 val thy = ProofContext.theory_of ctxt |
|
1172 val vrs = Term.add_frees concl [] |
|
1173 val cvrs = map (cterm_of thy o Free) vrs |
|
1174 val concl' = apply_under_Trueprop (all_list vrs) concl |
|
1175 val goal = Logic.mk_implies (concl', concl) |
|
1176 val rule = Goal.prove ctxt [] [] goal |
|
1177 (K (EVERY1 [inst_spec_tac (rev cvrs), atac])) |
|
1178 in |
|
1179 rtac rule i |
|
1180 end) |
|
1181 *} |
|
1182 |
|
1183 section {* General outline of the lifting procedure *} |
|
1184 |
|
1185 (* - A is the original raw theorem *) |
|
1186 (* - B is the regularized theorem *) |
|
1187 (* - C is the rep/abs injected version of B *) |
|
1188 (* - D is the lifted theorem *) |
|
1189 (* *) |
|
1190 (* - b is the regularization step *) |
|
1191 (* - c is the rep/abs injection step *) |
|
1192 (* - d is the cleaning part *) |
|
1193 |
|
1194 lemma lifting_procedure: |
|
1195 assumes a: "A" |
|
1196 and b: "A \<Longrightarrow> B" |
|
1197 and c: "B = C" |
|
1198 and d: "C = D" |
|
1199 shows "D" |
|
1200 using a b c d |
|
1201 by simp |
|
1202 |
|
1203 ML {* |
|
1204 fun lift_match_error ctxt fun_str rtrm qtrm = |
|
1205 let |
|
1206 val rtrm_str = Syntax.string_of_term ctxt rtrm |
|
1207 val qtrm_str = Syntax.string_of_term ctxt qtrm |
|
1208 val msg = [enclose "[" "]" fun_str, "The quotient theorem\n", qtrm_str, |
|
1209 "and the lifted theorem\n", rtrm_str, "do not match"] |
|
1210 in |
|
1211 error (space_implode " " msg) |
|
1212 end |
|
1213 *} |
|
1214 |
|
1215 ML {* |
|
1216 fun procedure_inst ctxt rtrm qtrm = |
|
1217 let |
|
1218 val thy = ProofContext.theory_of ctxt |
|
1219 val rtrm' = HOLogic.dest_Trueprop rtrm |
|
1220 val qtrm' = HOLogic.dest_Trueprop qtrm |
|
1221 val reg_goal = |
|
1222 Syntax.check_term ctxt (regularize_trm ctxt rtrm' qtrm') |
|
1223 handle (LIFT_MATCH s) => lift_match_error ctxt s rtrm qtrm |
|
1224 val inj_goal = |
|
1225 Syntax.check_term ctxt (inj_repabs_trm ctxt (reg_goal, qtrm')) |
|
1226 handle (LIFT_MATCH s) => lift_match_error ctxt s rtrm qtrm |
|
1227 in |
|
1228 Drule.instantiate' [] |
|
1229 [SOME (cterm_of thy rtrm'), |
|
1230 SOME (cterm_of thy reg_goal), |
|
1231 SOME (cterm_of thy inj_goal)] @{thm lifting_procedure} |
|
1232 end |
|
1233 *} |
|
1234 |
|
1235 (* Left for debugging *) |
|
1236 ML {* |
|
1237 fun procedure_tac lthy rthm = |
|
1238 ObjectLogic.full_atomize_tac |
|
1239 THEN' gen_frees_tac lthy |
|
1240 THEN' Subgoal.FOCUS (fn {context, concl, ...} => |
|
1241 let |
|
1242 val rthm' = atomize_thm rthm |
|
1243 val rule = procedure_inst context (prop_of rthm') (term_of concl) |
|
1244 in |
|
1245 EVERY1 [rtac rule, rtac rthm'] |
|
1246 end) lthy |
|
1247 *} |
|
1248 |
|
1249 ML {* |
|
1250 (* FIXME/TODO should only get as arguments the rthm like procedure_tac *) |
|
1251 fun lift_tac lthy rthm rel_eqv rty quot defs = |
|
1252 ObjectLogic.full_atomize_tac |
|
1253 THEN' gen_frees_tac lthy |
|
1254 THEN' Subgoal.FOCUS (fn {context, concl, ...} => |
|
1255 let |
|
1256 val rthm' = atomize_thm rthm |
|
1257 val rule = procedure_inst context (prop_of rthm') (term_of concl) |
|
1258 val aps = find_aps (prop_of rthm') (term_of concl) |
|
1259 val rel_refl = map (fn x => @{thm EQUIV_REFL} OF [x]) rel_eqv |
|
1260 val trans2 = map (fn x => @{thm equiv_trans2} OF [x]) rel_eqv |
|
1261 in |
|
1262 EVERY1 |
|
1263 [rtac rule, |
|
1264 RANGE [rtac rthm', |
|
1265 regularize_tac lthy rel_eqv, |
|
1266 all_inj_repabs_tac lthy rty quot rel_refl trans2, |
|
1267 clean_tac lthy quot defs aps]] |
|
1268 end) lthy |
|
1269 *} |
|
1270 |
|
1271 end |
|
1272 |
|
1273 |