Quotient-Paper/Paper.thy
changeset 2225 cbffed7d81bd
parent 2224 f5b6f9d8a882
child 2226 36c9d9e658c7
equal deleted inserted replaced
2224:f5b6f9d8a882 2225:cbffed7d81bd
    61   understood how to use both mechanisms for dealing with quotient
    61   understood how to use both mechanisms for dealing with quotient
    62   constructions in HOL (see \cite{Homeier05,Paulson06}).  For example the
    62   constructions in HOL (see \cite{Homeier05,Paulson06}).  For example the
    63   integers in Isabelle/HOL are constructed by a quotient construction over the
    63   integers in Isabelle/HOL are constructed by a quotient construction over the
    64   type @{typ "nat \<times> nat"} and the equivalence relation
    64   type @{typ "nat \<times> nat"} and the equivalence relation
    65 
    65 
    66   @{text [display, indent=10] "(n\<^isub>1, n\<^isub>2) \<approx> (m\<^isub>1, m\<^isub>2) \<equiv> n\<^isub>1 + n\<^isub>2 = m\<^isub>1 + m\<^isub>2"}
    66   @{text [display, indent=10] "(n\<^isub>1, n\<^isub>2) \<approx> (m\<^isub>1, m\<^isub>2) \<equiv> n\<^isub>1 + m\<^isub>2 = m\<^isub>1 + n\<^isub>2"}
    67 
    67 
    68   \noindent
    68   \noindent
    69   This constructions yields the new type @{typ int} and definitions for @{text
    69   This constructions yields the new type @{typ int} and definitions for @{text
    70   "0"} and @{text "1"} of type @{typ int} can be given in terms of pairs of
    70   "0"} and @{text "1"} of type @{typ int} can be given in terms of pairs of
    71   natural numbers (namely @{text "(0, 0)"} and @{text "(1, 0)"}). Operations
    71   natural numbers (namely @{text "(0, 0)"} and @{text "(1, 0)"}). Operations