FSet.thy
changeset 524 c7c6ba5ac043
parent 516 bed81795848c
child 526 7ba2fc25c6a3
equal deleted inserted replaced
523:1a4eb39ba834 524:c7c6ba5ac043
   335 
   335 
   336 lemma "FUNION (FUNION x xa) xb = FUNION x (FUNION xa xb)"
   336 lemma "FUNION (FUNION x xa) xb = FUNION x (FUNION xa xb)"
   337 apply (tactic {* lift_tac_fset @{context} @{thm append_assoc} 1 *})
   337 apply (tactic {* lift_tac_fset @{context} @{thm append_assoc} 1 *})
   338 done
   338 done
   339 
   339 
   340 lemma cheat: "P" sorry
       
   341 
       
   342 
   340 
   343 lemma "\<lbrakk>P EMPTY; \<And>a x. P x \<Longrightarrow> P (INSERT a x)\<rbrakk> \<Longrightarrow> P l"
   341 lemma "\<lbrakk>P EMPTY; \<And>a x. P x \<Longrightarrow> P (INSERT a x)\<rbrakk> \<Longrightarrow> P l"
   344 apply (tactic {* (ObjectLogic.full_atomize_tac THEN' gen_frees_tac @{context}) 1 *})
   342 apply (tactic {* (ObjectLogic.full_atomize_tac THEN' gen_frees_tac @{context}) 1 *})
   345 apply(tactic {* procedure_tac @{context} @{thm list.induct} 1 *})
   343 apply(tactic {* procedure_tac @{context} @{thm list.induct} 1 *})
   346 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   344 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})