Nominal/Ex/ExLetRec.thy
changeset 1773 c0eac04ae3b4
parent 1685 721d92623c9d
child 2041 3842464ee03b
equal deleted inserted replaced
1772:48c2eb84d5ce 1773:c0eac04ae3b4
       
     1 theory ExLetRec
       
     2 imports "../Parser"
       
     3 begin
       
     4 
       
     5 
       
     6 text {* example 3 or example 5 from Terms.thy *}
       
     7 
       
     8 atom_decl name
       
     9 
       
    10 ML {* val _ = recursive := true *}
       
    11 ML {* val _ = alpha_type := AlphaLst *}
       
    12 nominal_datatype trm =
       
    13   Vr "name"
       
    14 | Ap "trm" "trm"
       
    15 | Lm x::"name" t::"trm"  bind x in t
       
    16 | Lt a::"lts" t::"trm"   bind "bn a" in t
       
    17 and lts =
       
    18   Lnil
       
    19 | Lcons "name" "trm" "lts"
       
    20 binder
       
    21   bn
       
    22 where
       
    23   "bn Lnil = []"
       
    24 | "bn (Lcons x t l) = (atom x) # (bn l)"
       
    25 
       
    26 thm trm_lts.fv
       
    27 thm trm_lts.eq_iff
       
    28 thm trm_lts.bn
       
    29 thm trm_lts.perm
       
    30 thm trm_lts.induct
       
    31 thm trm_lts.distinct
       
    32 thm trm_lts.supp
       
    33 thm trm_lts.fv[simplified trm_lts.supp]
       
    34 
       
    35 (* why is this not in HOL simpset? *)
       
    36 lemma set_sub: "{a, b} - {b} = {a} - {b}"
       
    37 by auto
       
    38 
       
    39 lemma lets_bla:
       
    40   "x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Lt (Lcons x (Vr y) Lnil) (Vr x)) \<noteq> (Lt (Lcons x (Vr z) Lnil) (Vr x))"
       
    41   by (simp add: trm_lts.eq_iff alphas2 set_sub)
       
    42 
       
    43 lemma lets_ok:
       
    44   "(Lt (Lcons x (Vr x) Lnil) (Vr x)) = (Lt (Lcons y (Vr y) Lnil) (Vr y))"
       
    45   apply (simp add: trm_lts.eq_iff)
       
    46   apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
       
    47   apply (simp_all add: alphas2 fresh_star_def eqvts)
       
    48   done
       
    49 
       
    50 lemma lets_ok3:
       
    51   "x \<noteq> y \<Longrightarrow>
       
    52    (Lt (Lcons x (Ap (Vr y) (Vr x)) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
       
    53    (Lt (Lcons y (Ap (Vr x) (Vr y)) (Lcons x (Vr x) Lnil)) (Ap (Vr x) (Vr y)))"
       
    54   apply (simp add: alphas trm_lts.eq_iff)
       
    55   done
       
    56 
       
    57 
       
    58 lemma lets_not_ok1:
       
    59   "x \<noteq> y \<Longrightarrow>
       
    60    (Lt (Lcons x (Vr x) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
       
    61    (Lt (Lcons y (Vr x) (Lcons x (Vr y) Lnil)) (Ap (Vr x) (Vr y)))"
       
    62   apply (simp add: alphas trm_lts.eq_iff)
       
    63   done
       
    64 
       
    65 lemma lets_nok:
       
    66   "x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow>
       
    67    (Lt (Lcons x (Ap (Vr z) (Vr z)) (Lcons y (Vr z) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
       
    68    (Lt (Lcons y (Vr z) (Lcons x (Ap (Vr z) (Vr z)) Lnil)) (Ap (Vr x) (Vr y)))"
       
    69   apply (simp add: alphas trm_lts.eq_iff fresh_star_def)
       
    70   done
       
    71 
       
    72 lemma lets_ok4:
       
    73   "(Lt (Lcons x (Ap (Vr y) (Vr x)) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) =
       
    74    (Lt (Lcons y (Ap (Vr x) (Vr y)) (Lcons x (Vr x) Lnil)) (Ap (Vr y) (Vr x)))"
       
    75   apply (simp add: alphas trm_lts.eq_iff)
       
    76   apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
       
    77   apply (simp add: atom_eqvt fresh_star_def)
       
    78   done
       
    79 
       
    80 end
       
    81 
       
    82 
       
    83