Nominal/Test_compat.thy
changeset 1368 c0cb30581f58
child 1369 424962b8b699
equal deleted inserted replaced
1367:9bbf56cdeb88 1368:c0cb30581f58
       
     1 theory Test_compat
       
     2 imports "Parser" "../Attic/Prove"
       
     3 begin
       
     4 
       
     5 text {* 
       
     6   example 1 
       
     7   
       
     8   single let binding
       
     9 *}
       
    10 
       
    11 nominal_datatype lam =
       
    12   VAR "name"
       
    13 | APP "lam" "lam"
       
    14 | LET bp::"bp" t::"lam"   bind "bi bp" in t
       
    15 and bp = 
       
    16   BP "name" "lam" 
       
    17 binder
       
    18   bi::"bp \<Rightarrow> atom set"
       
    19 where
       
    20   "bi (BP x t) = {atom x}"
       
    21 
       
    22 thm alpha_lam_raw_alpha_bp_raw.intros[no_vars]
       
    23 
       
    24 abbreviation "VAR \<equiv> VAR_raw"
       
    25 abbreviation "APP \<equiv> APP_raw"
       
    26 abbreviation "LET \<equiv> LET_raw"
       
    27 abbreviation "BP \<equiv> BP_raw"
       
    28 abbreviation "bi \<equiv> bi_raw"
       
    29 
       
    30 (* non-recursive case *)
       
    31 
       
    32 inductive
       
    33   alpha_lam :: "lam_raw \<Rightarrow> lam_raw \<Rightarrow> bool" and
       
    34   alpha_bp  :: "bp_raw \<Rightarrow> bp_raw \<Rightarrow> bool" and
       
    35   compat_bp :: "bp_raw \<Rightarrow> perm \<Rightarrow> bp_raw \<Rightarrow> bool"
       
    36 where
       
    37   "x = y \<Longrightarrow> alpha_lam (VAR x) (VAR y)"
       
    38 | "alpha_lam l1 s1 \<and> alpha_lam l2 s2 \<Longrightarrow> alpha_lam (APP l1 l2) (APP s1 s2)"
       
    39 | "\<exists>pi. (bi bp, lam) \<approx>gen alpha_lam fv_lam_raw pi (bi bp', lam') \<and> compat_bp bp pi bp' 
       
    40    \<Longrightarrow> alpha_lam (LET bp lam) (LET bp' lam')"
       
    41 | "alpha_lam lam lam' \<and> name = name' \<Longrightarrow> alpha_bp (BP name lam) (BP name' lam')"
       
    42 | "alpha_lam t t' \<and> pi \<bullet> x = x' \<Longrightarrow> compat_bp (BP x t) pi (BP x' t')" 
       
    43 
       
    44 lemma test1:
       
    45   assumes "distinct [x, y]"
       
    46   shows "alpha_lam (LET (BP x (VAR x)) (VAR x))
       
    47                    (LET (BP y (VAR x)) (VAR y))"
       
    48 apply(rule alpha_lam_alpha_bp_compat_bp.intros)
       
    49 apply(rule_tac x="(x \<leftrightarrow> y)" in exI)
       
    50 apply(simp add: alpha_gen fresh_star_def)
       
    51 apply(simp add: alpha_lam_alpha_bp_compat_bp.intros(1))
       
    52 apply(rule alpha_lam_alpha_bp_compat_bp.intros)
       
    53 apply(simp add: alpha_lam_alpha_bp_compat_bp.intros(1))
       
    54 done
       
    55 
       
    56 lemma test2:
       
    57   assumes asm: "distinct [x, y]"
       
    58   shows "\<not> alpha_lam (LET (BP x (VAR x)) (VAR x))
       
    59                      (LET (BP y (VAR y)) (VAR y))"
       
    60 using asm
       
    61 apply(clarify)
       
    62 apply(erule alpha_lam.cases)
       
    63 apply(simp_all)
       
    64 apply(erule exE)
       
    65 apply(clarify)
       
    66 apply(simp add: alpha_gen fresh_star_def)
       
    67 apply(erule alpha_lam.cases)
       
    68 apply(simp_all)
       
    69 apply(clarify)
       
    70 apply(erule compat_bp.cases)
       
    71 apply(simp_all)
       
    72 apply(clarify)
       
    73 apply(erule alpha_lam.cases)
       
    74 apply(simp_all)
       
    75 done
       
    76 
       
    77 (* recursive case where we have also bind "bi bp" in bp *)
       
    78 
       
    79 inductive
       
    80   Alpha_lam :: "lam_raw \<Rightarrow> lam_raw \<Rightarrow> bool" and
       
    81   Alpha_bp  :: "bp_raw \<Rightarrow> bp_raw \<Rightarrow> bool" and
       
    82   Compat_bp :: "bp_raw \<Rightarrow> perm \<Rightarrow> bp_raw \<Rightarrow> bool"
       
    83 where
       
    84   "x = y \<Longrightarrow> Alpha_lam (VAR x) (VAR y)"
       
    85 | "Alpha_lam l1 s1 \<and> Alpha_lam l2 s2 \<Longrightarrow> Alpha_lam (APP l1 l2) (APP s1 s2)"
       
    86 | "\<exists>pi. (bi bp, lam) \<approx>gen Alpha_lam fv_lam_raw pi (bi bp', lam') \<and> Compat_bp bp pi bp' 
       
    87    \<Longrightarrow> Alpha_lam (LET bp lam) (LET bp' lam')"
       
    88 | "Alpha_lam lam lam' \<and> name = name' \<Longrightarrow> Alpha_bp (BP name lam) (BP name' lam')"
       
    89 | "Alpha_lam (pi \<bullet> t) t' \<and> pi \<bullet> x = x' \<Longrightarrow> Compat_bp (BP x t) pi (BP x' t')"
       
    90 
       
    91 lemma Test1:
       
    92   assumes "distinct [x, y]"
       
    93   shows "Alpha_lam (LET (BP x (VAR x)) (VAR x))
       
    94                    (LET (BP y (VAR y)) (VAR y))"
       
    95 apply(rule Alpha_lam_Alpha_bp_Compat_bp.intros)
       
    96 apply(rule_tac x="(x \<leftrightarrow> y)" in exI)
       
    97 apply(simp add: alpha_gen fresh_star_def)
       
    98 apply(simp add: Alpha_lam_Alpha_bp_Compat_bp.intros(1))
       
    99 apply(rule Alpha_lam_Alpha_bp_Compat_bp.intros)
       
   100 apply(simp add: Alpha_lam_Alpha_bp_Compat_bp.intros(1))
       
   101 done
       
   102 
       
   103 lemma Test2:
       
   104   assumes asm: "distinct [x, y]"
       
   105   shows "\<not> Alpha_lam (LET (BP x (VAR x)) (VAR x))
       
   106                      (LET (BP y (VAR x)) (VAR y))"
       
   107 using asm
       
   108 apply(clarify)
       
   109 apply(erule Alpha_lam.cases)
       
   110 apply(simp_all)
       
   111 apply(erule exE)
       
   112 apply(clarify)
       
   113 apply(simp add: alpha_gen fresh_star_def)
       
   114 apply(erule Alpha_lam.cases)
       
   115 apply(simp_all)
       
   116 apply(clarify)
       
   117 apply(erule Compat_bp.cases)
       
   118 apply(simp_all)
       
   119 apply(clarify)
       
   120 apply(erule Alpha_lam.cases)
       
   121 apply(simp_all)
       
   122 done
       
   123 
       
   124 
       
   125 text {* example 2 *}
       
   126 
       
   127 nominal_datatype trm' =
       
   128   Var "name"
       
   129 | App "trm'" "trm'"
       
   130 | Lam x::"name" t::"trm'"          bind x in t 
       
   131 | Let p::"pat'" "trm'" t::"trm'"   bind "f p" in t
       
   132 and pat' =
       
   133   PN
       
   134 | PS "name"
       
   135 | PD "name" "name"
       
   136 binder
       
   137   f::"pat' \<Rightarrow> atom set"
       
   138 where 
       
   139   "f PN = {}"
       
   140 | "f (PS x) = {atom x}"
       
   141 | "f (PD x y) = {atom x} \<union> {atom y}"
       
   142 
       
   143 thm alpha_trm'_raw_alpha_pat'_raw.intros[no_vars]
       
   144 
       
   145 abbreviation "Var \<equiv> VAR_raw"
       
   146 abbreviation "App \<equiv> APP_raw"
       
   147 abbreviation "Lam \<equiv> Lam_raw"
       
   148 abbreviation "Lett \<equiv> Let_raw"
       
   149 abbreviation "PN \<equiv> PN_raw"
       
   150 abbreviation "PS \<equiv> PS_raw"
       
   151 abbreviation "PD \<equiv> PD_raw"
       
   152 abbreviation "f \<equiv> f_raw"
       
   153 
       
   154 (* not_yet_done
       
   155 name = namea \<Longrightarrow> alpha_trm'_raw (Var_raw name) (Var_raw namea)
       
   156 alpha_trm'_raw trm'_raw2 trm'_raw2a \<and> alpha_trm'_raw trm'_raw1 trm'_raw1a \<Longrightarrow>
       
   157 alpha_trm'_raw (App_raw trm'_raw1 trm'_raw2) (App_raw trm'_raw1a trm'_raw2a)
       
   158 \<exists>pi. ({atom name}, trm'_raw) \<approx>gen alpha_trm'_raw fv_trm'_raw pi ({atom namea}, trm'_rawa) \<Longrightarrow>
       
   159 alpha_trm'_raw (Lam_raw name trm'_raw) (Lam_raw namea trm'_rawa)
       
   160 \<exists>pi. (f_raw pat'_raw,
       
   161       trm'_raw2) \<approx>gen alpha_trm'_raw fv_trm'_raw pi (f_raw pat'_rawa, trm'_raw2a) \<and>
       
   162      alpha_trm'_raw trm'_raw1 trm'_raw1a \<and>
       
   163      (f_raw pat'_raw,
       
   164       pat'_raw) \<approx>gen alpha_pat'_raw fv_pat'_raw pi (f_raw pat'_rawa, pat'_rawa) \<Longrightarrow>
       
   165 alpha_trm'_raw (Let_raw pat'_raw trm'_raw1 trm'_raw2) (Let_raw pat'_rawa trm'_raw1a trm'_raw2a)
       
   166 True \<Longrightarrow> alpha_pat'_raw PN_raw PN_raw
       
   167 name = namea \<Longrightarrow> alpha_pat'_raw (PS_raw name) (PS_raw namea)
       
   168 name2 = name2a \<and> name1 = name1a \<Longrightarrow> alpha_pat'_raw (PD_raw name1 name2) (PD_raw name1a name2a)
       
   169 *)
       
   170 
       
   171 (* compat should be
       
   172 compat (PN) pi (PN) == True
       
   173 compat (PS x) pi (PS x') == pi o x = x'
       
   174 compat (PD p1 p2) pi (PD p1' p2') == compat p1 pi p1' & compat p2 pi p2'
       
   175 *)
       
   176 
       
   177 
       
   178 thm alpha_trm'_raw_alpha_pat'_raw.intros[no_vars]
       
   179 thm fv_trm'_raw_fv_pat'_raw.simps[no_vars]
       
   180 thm f_raw.simps
       
   181 (*thm trm'_pat'_induct
       
   182 thm trm'_pat'_perm
       
   183 thm trm'_pat'_fv
       
   184 thm trm'_pat'_bn
       
   185 thm trm'_pat'_inject*)
       
   186 
       
   187 nominal_datatype trm0 =
       
   188   Var0 "name"
       
   189 | App0 "trm0" "trm0"
       
   190 | Lam0 x::"name" t::"trm0"          bind x in t 
       
   191 | Let0 p::"pat0" "trm0" t::"trm0"   bind "f0 p" in t
       
   192 and pat0 =
       
   193   PN0
       
   194 | PS0 "name"
       
   195 | PD0 "pat0" "pat0"
       
   196 binder
       
   197   f0::"pat0 \<Rightarrow> atom set"
       
   198 where 
       
   199   "f0 PN0 = {}"
       
   200 | "f0 (PS0 x) = {atom x}"
       
   201 | "f0 (PD0 p1 p2) = (f0 p1) \<union> (f0 p2)"
       
   202 
       
   203 thm f0_raw.simps
       
   204 (*thm trm0_pat0_induct
       
   205 thm trm0_pat0_perm
       
   206 thm trm0_pat0_fv
       
   207 thm trm0_pat0_bn*)
       
   208 
       
   209 text {* example type schemes *}
       
   210 
       
   211 (* does not work yet
       
   212 nominal_datatype t =
       
   213   Var "name"
       
   214 | Fun "t" "t"
       
   215 
       
   216 nominal_datatype tyS =
       
   217   All xs::"name list" ty::"t_raw" bind xs in ty
       
   218 *)
       
   219 
       
   220 
       
   221 nominal_datatype t = 
       
   222   Var "name" 
       
   223 | Fun "t" "t"
       
   224 and  tyS = 
       
   225   All xs::"name set" ty::"t" bind xs in ty
       
   226 
       
   227 (* example 1 from Terms.thy *)
       
   228 
       
   229 nominal_datatype trm1 =
       
   230   Vr1 "name"
       
   231 | Ap1 "trm1" "trm1"
       
   232 | Lm1 x::"name" t::"trm1"       bind x in t 
       
   233 | Lt1 p::"bp1" "trm1" t::"trm1" bind "bv1 p" in t 
       
   234 and bp1 =
       
   235   BUnit1
       
   236 | BV1 "name"
       
   237 | BP1 "bp1" "bp1"
       
   238 binder
       
   239   bv1
       
   240 where
       
   241   "bv1 (BUnit1) = {}"
       
   242 | "bv1 (BV1 x) = {atom x}"
       
   243 | "bv1 (BP1 bp1 bp2) = (bv1 bp1) \<union> (bv1 bp2)"
       
   244 
       
   245 thm bv1_raw.simps
       
   246 
       
   247 (* example 2 from Terms.thy *)
       
   248 
       
   249 nominal_datatype trm2 =
       
   250   Vr2 "name"
       
   251 | Ap2 "trm2" "trm2"
       
   252 | Lm2 x::"name" t::"trm2"       bind x in t
       
   253 | Lt2 r::"assign" t::"trm2"    bind "bv2 r" in t
       
   254 and assign = 
       
   255   As "name" "trm2"
       
   256 binder
       
   257   bv2
       
   258 where
       
   259   "bv2 (As x t) = {atom x}"
       
   260 
       
   261 (* compat should be
       
   262 compat (As x t) pi (As x' t') == pi o x = x' & alpha t t'
       
   263 *)
       
   264 
       
   265 
       
   266 thm fv_trm2_raw_fv_assign_raw.simps[no_vars]
       
   267 thm alpha_trm2_raw_alpha_assign_raw.intros[no_vars]
       
   268 
       
   269 
       
   270 
       
   271 text {* example 3 from Terms.thy *}
       
   272 
       
   273 nominal_datatype trm3 =
       
   274   Vr3 "name"
       
   275 | Ap3 "trm3" "trm3"
       
   276 | Lm3 x::"name" t::"trm3"        bind x in t
       
   277 | Lt3 r::"rassigns3" t::"trm3"   bind "bv3 r" in t
       
   278 and rassigns3 =
       
   279   ANil
       
   280 | ACons "name" "trm3" "rassigns3"
       
   281 binder
       
   282   bv3
       
   283 where
       
   284   "bv3 ANil = {}"
       
   285 | "bv3 (ACons x t as) = {atom x} \<union> (bv3 as)"
       
   286 
       
   287 
       
   288 (* compat should be
       
   289 compat (ANil) pi (PNil) \<equiv> TRue
       
   290 compat (ACons x t ts) pi (ACons x' t' ts') \<equiv> pi o x = x' \<and> alpha t t' \<and> compat ts pi ts'
       
   291 *)
       
   292 
       
   293 (* example 4 from Terms.thy *)
       
   294 
       
   295 (* fv_eqvt does not work, we need to repaire defined permute functions
       
   296    defined fv and defined alpha... *)
       
   297 nominal_datatype trm4 =
       
   298   Vr4 "name"
       
   299 | Ap4 "trm4" "trm4 list"
       
   300 | Lm4 x::"name" t::"trm4"  bind x in t
       
   301 
       
   302 thm alpha_trm4_raw_alpha_trm4_raw_list.intros[no_vars]
       
   303 thm fv_trm4_raw_fv_trm4_raw_list.simps[no_vars]
       
   304 
       
   305 (* example 5 from Terms.thy *)
       
   306 
       
   307 nominal_datatype trm5 =
       
   308   Vr5 "name"
       
   309 | Ap5 "trm5" "trm5"
       
   310 | Lt5 l::"lts" t::"trm5"  bind "bv5 l" in t
       
   311 and lts =
       
   312   Lnil
       
   313 | Lcons "name" "trm5" "lts"
       
   314 binder
       
   315   bv5
       
   316 where
       
   317   "bv5 Lnil = {}"
       
   318 | "bv5 (Lcons n t ltl) = {atom n} \<union> (bv5 ltl)"
       
   319 
       
   320 (* example 6 from Terms.thy *)
       
   321 
       
   322 (* BV is not respectful, needs to fail*)
       
   323 nominal_datatype trm6 =
       
   324   Vr6 "name"
       
   325 | Lm6 x::"name" t::"trm6"         bind x in t
       
   326 | Lt6 left::"trm6" right::"trm6"  bind "bv6 left" in right
       
   327 binder
       
   328   bv6
       
   329 where
       
   330   "bv6 (Vr6 n) = {}"
       
   331 | "bv6 (Lm6 n t) = {atom n} \<union> bv6 t"
       
   332 | "bv6 (Lt6 l r) = bv6 l \<union> bv6 r"
       
   333 (* example 7 from Terms.thy *)
       
   334 
       
   335 (* BV is not respectful, needs to fail*)
       
   336 nominal_datatype trm7 =
       
   337   Vr7 "name"
       
   338 | Lm7 l::"name" r::"trm7"   bind l in r
       
   339 | Lt7 l::"trm7" r::"trm7"   bind "bv7 l" in r
       
   340 binder 
       
   341   bv7 
       
   342 where
       
   343   "bv7 (Vr7 n) = {atom n}"
       
   344 | "bv7 (Lm7 n t) = bv7 t - {atom n}"
       
   345 | "bv7 (Lt7 l r) = bv7 l \<union> bv7 r"
       
   346 
       
   347 (* example 8 from Terms.thy *)
       
   348 
       
   349 nominal_datatype foo8 =
       
   350   Foo0 "name"
       
   351 | Foo1 b::"bar8" f::"foo8" bind "bv8 b" in f --"check fo error if this is called foo"
       
   352 and bar8 =
       
   353   Bar0 "name"
       
   354 | Bar1 "name" s::"name" b::"bar8" bind s in b
       
   355 binder 
       
   356   bv8
       
   357 where
       
   358   "bv8 (Bar0 x) = {}"
       
   359 | "bv8 (Bar1 v x b) = {atom v}"
       
   360 
       
   361 (* example 9 from Terms.thy *)
       
   362 
       
   363 (* BV is not respectful, needs to fail*)
       
   364 nominal_datatype lam9 =
       
   365   Var9 "name"
       
   366 | Lam9 n::"name" l::"lam9" bind n in l
       
   367 and bla9 =
       
   368   Bla9 f::"lam9" s::"lam9" bind "bv9 f" in s
       
   369 binder
       
   370   bv9
       
   371 where
       
   372   "bv9 (Var9 x) = {}"
       
   373 | "bv9 (Lam9 x b) = {atom x}"
       
   374 
       
   375 (* example from my PHD *)
       
   376 
       
   377 atom_decl coname
       
   378 
       
   379 nominal_datatype phd =
       
   380    Ax "name" "coname"
       
   381 |  Cut n::"coname" t1::"phd" c::"coname" t2::"phd"              bind n in t1, bind c in t2
       
   382 |  AndR c1::"coname" t1::"phd" c2::"coname" t2::"phd" "coname"  bind c1 in t1, bind c2 in t2
       
   383 |  AndL1 n::"name" t::"phd" "name"                              bind n in t
       
   384 |  AndL2 n::"name" t::"phd" "name"                              bind n in t
       
   385 |  ImpL c::"coname" t1::"phd" n::"name" t2::"phd" "name"        bind c in t1, bind n in t2
       
   386 |  ImpR c::"coname" n::"name" t::"phd" "coname"                 bind n in t, bind c in t
       
   387 
       
   388 thm alpha_phd_raw.intros[no_vars]
       
   389 thm fv_phd_raw.simps[no_vars]
       
   390 
       
   391 
       
   392 (* example form Leroy 96 about modules; OTT *)
       
   393 
       
   394 nominal_datatype mexp =
       
   395   Acc "path"
       
   396 | Stru "body"
       
   397 | Funct x::"name" "sexp" m::"mexp"    bind x in m
       
   398 | FApp "mexp" "path"
       
   399 | Ascr "mexp" "sexp"
       
   400 and body =
       
   401   Empty
       
   402 | Seq c::defn d::"body"     bind "cbinders c" in d
       
   403 and defn =  
       
   404   Type "name" "tyty"
       
   405 | Dty "name"
       
   406 | DStru "name" "mexp"
       
   407 | Val "name" "trmtrm"
       
   408 and sexp =
       
   409   Sig sbody
       
   410 | SFunc "name" "sexp" "sexp"
       
   411 and sbody = 
       
   412   SEmpty
       
   413 | SSeq C::spec D::sbody    bind "Cbinders C" in D
       
   414 and spec =
       
   415   Type1 "name" 
       
   416 | Type2 "name" "tyty"
       
   417 | SStru "name" "sexp"
       
   418 | SVal "name" "tyty"
       
   419 and tyty =
       
   420   Tyref1 "name"
       
   421 | Tyref2 "path" "tyty"
       
   422 | Fun "tyty" "tyty"
       
   423 and path =
       
   424   Sref1 "name"
       
   425 | Sref2 "path" "name"
       
   426 and trmtrm =
       
   427   Tref1 "name"
       
   428 | Tref2 "path" "name"
       
   429 | Lam' v::"name" "tyty" M::"trmtrm"  bind v in M
       
   430 | App' "trmtrm" "trmtrm"
       
   431 | Let' "body" "trmtrm"
       
   432 binder
       
   433     cbinders :: "defn \<Rightarrow> atom set"
       
   434 and Cbinders :: "spec \<Rightarrow> atom set"
       
   435 where
       
   436   "cbinders (Type t T) = {atom t}"
       
   437 | "cbinders (Dty t) = {atom t}"
       
   438 | "cbinders (DStru x s) = {atom x}"
       
   439 | "cbinders (Val v M) = {atom v}"
       
   440 | "Cbinders (Type1 t) = {atom t}"
       
   441 | "Cbinders (Type2 t T) = {atom t}"
       
   442 | "Cbinders (SStru x S) = {atom x}"
       
   443 | "Cbinders (SVal v T) = {atom v}"  
       
   444 
       
   445 (* core haskell *)
       
   446 print_theorems
       
   447 
       
   448 atom_decl var
       
   449 atom_decl tvar
       
   450 
       
   451 
       
   452 (* there are types, coercion types and regular types *)
       
   453 nominal_datatype tkind = 
       
   454   KStar
       
   455 | KFun "tkind" "tkind"
       
   456 and ckind =
       
   457   CKEq "ty" "ty" 
       
   458 and ty =
       
   459   TVar "tvar"
       
   460 | TC "string"
       
   461 | TApp "ty" "ty"
       
   462 | TFun "string" "ty list"
       
   463 | TAll tv::"tvar" "tkind" T::"ty"  bind tv in T
       
   464 | TEq "ty" "ty" "ty"
       
   465 and co =
       
   466   CC "string"
       
   467 | CApp "co" "co"
       
   468 | CFun "string" "co list"
       
   469 | CAll tv::"tvar" "ckind" C::"co"  bind tv in C
       
   470 | CEq "co" "co" "co"
       
   471 | CSym "co"
       
   472 | CCir "co" "co"
       
   473 | CLeft "co"
       
   474 | CRight "co"
       
   475 | CSim "co"
       
   476 | CRightc "co"
       
   477 | CLeftc "co"
       
   478 | CCoe "co" "co"
       
   479 
       
   480 
       
   481 typedecl ty --"hack since ty is not yet defined"
       
   482 
       
   483 abbreviation 
       
   484   "atoms A \<equiv> atom ` A"
       
   485 
       
   486 nominal_datatype trm =
       
   487   Var "var"
       
   488 | C "string"
       
   489 | LAM tv::"tvar" "kind" t::"trm"   bind tv in t 
       
   490 | APP "trm" "ty"
       
   491 | Lam v::"var" "ty" t::"trm"       bind v in t
       
   492 | App "trm" "trm"
       
   493 | Let x::"var" "ty" "trm" t::"trm" bind x in t
       
   494 | Case "trm" "assoc list"
       
   495 | Cast "trm" "ty"                   --"ty is supposed to be a coercion type only"
       
   496 and assoc = 
       
   497   A p::"pat" t::"trm" bind "bv p" in t 
       
   498 and pat = 
       
   499   K "string" "(tvar \<times> kind) list" "(var \<times> ty) list"
       
   500 binder
       
   501  bv :: "pat \<Rightarrow> atom set"
       
   502 where
       
   503  "bv (K s ts vs) = (atoms (set (map fst ts))) \<union> (atoms (set (map fst vs)))"
       
   504 
       
   505 (*
       
   506 compat (K s ts vs) pi (K s' ts' vs') ==
       
   507   s = s' & 
       
   508 
       
   509 *)
       
   510 
       
   511 
       
   512 (*thm bv_raw.simps*)
       
   513 
       
   514 (* example 3 from Peter Sewell's bestiary *)
       
   515 nominal_datatype exp =
       
   516   VarP "name"
       
   517 | AppP "exp" "exp"
       
   518 | LamP x::"name" e::"exp" bind x in e
       
   519 | LetP x::"name" p::"pat" e1::"exp" e2::"exp" bind x in e2, bind "bp p" in e1
       
   520 and pat =
       
   521   PVar "name"
       
   522 | PUnit
       
   523 | PPair "pat" "pat"
       
   524 binder
       
   525   bp :: "pat \<Rightarrow> atom set"
       
   526 where
       
   527   "bp (PVar x) = {atom x}"
       
   528 | "bp (PUnit) = {}"
       
   529 | "bp (PPair p1 p2) = bp p1 \<union> bp p2"
       
   530 thm alpha_exp_raw_alpha_pat_raw.intros
       
   531 
       
   532 (* example 6 from Peter Sewell's bestiary *)
       
   533 nominal_datatype exp6 =
       
   534   EVar name
       
   535 | EPair exp6 exp6
       
   536 | ELetRec x::name p::pat6 e1::exp6 e2::exp6 bind x in e1, bind x in e2, bind "bp6 p" in e1
       
   537 and pat6 =
       
   538   PVar' name
       
   539 | PUnit'
       
   540 | PPair' pat6 pat6
       
   541 binder
       
   542   bp6 :: "pat6 \<Rightarrow> atom set"
       
   543 where
       
   544   "bp6 (PVar' x) = {atom x}"
       
   545 | "bp6 (PUnit') = {}"
       
   546 | "bp6 (PPair' p1 p2) = bp6 p1 \<union> bp6 p2"
       
   547 thm alpha_exp6_raw_alpha_pat6_raw.intros
       
   548 
       
   549 (* example 7 from Peter Sewell's bestiary *)
       
   550 nominal_datatype exp7 =
       
   551   EVar name
       
   552 | EUnit
       
   553 | EPair exp7 exp7
       
   554 | ELetRec l::lrbs e::exp7 bind "b7s l" in e, bind "b7s l" in l
       
   555 and lrb =
       
   556   Assign name exp7
       
   557 and lrbs =
       
   558   Single lrb
       
   559 | More lrb lrbs
       
   560 binder
       
   561   b7 :: "lrb \<Rightarrow> atom set" and
       
   562   b7s :: "lrbs \<Rightarrow> atom set"
       
   563 where
       
   564   "b7 (Assign x e) = {atom x}"
       
   565 | "b7s (Single a) = b7 a"
       
   566 | "b7s (More a as) = (b7 a) \<union> (b7s as)"
       
   567 thm alpha_exp7_raw_alpha_lrb_raw_alpha_lrbs_raw.intros
       
   568 
       
   569 (* example 8 from Peter Sewell's bestiary *)
       
   570 nominal_datatype exp8 =
       
   571   EVar name
       
   572 | EUnit
       
   573 | EPair exp8 exp8
       
   574 | ELetRec l::lrbs8 e::exp8 bind "b_lrbs8 l" in e, bind "b_lrbs8 l" in l
       
   575 and fnclause =
       
   576   K x::name p::pat8 e::exp8 bind "b_pat p" in e
       
   577 and fnclauses =
       
   578   S fnclause
       
   579 | ORs fnclause fnclauses
       
   580 and lrb8 =
       
   581   Clause fnclauses
       
   582 and lrbs8 =
       
   583   Single lrb8
       
   584 | More lrb8 lrbs8
       
   585 and pat8 =
       
   586   PVar name
       
   587 | PUnit
       
   588 | PPair pat8 pat8
       
   589 binder
       
   590   b_lrbs8 :: "lrbs8 \<Rightarrow> atom set" and
       
   591   b_pat :: "pat8 \<Rightarrow> atom set" and
       
   592   b_fnclauses :: "fnclauses \<Rightarrow> atom set" and
       
   593   b_fnclause :: "fnclause \<Rightarrow> atom set" and
       
   594   b_lrb8 :: "lrb8 \<Rightarrow> atom set"
       
   595 where
       
   596   "b_lrbs8 (Single l) = b_lrb8 l"
       
   597 | "b_lrbs8 (More l ls) = b_lrb8 l \<union> b_lrbs8 ls"
       
   598 | "b_pat (PVar x) = {atom x}"
       
   599 | "b_pat (PUnit) = {}"
       
   600 | "b_pat (PPair p1 p2) = b_pat p1 \<union> b_pat p2"
       
   601 | "b_fnclauses (S fc) = (b_fnclause fc)"
       
   602 | "b_fnclauses (ORs fc fcs) = (b_fnclause fc) \<union> (b_fnclauses fcs)"
       
   603 | "b_lrb8 (Clause fcs) = (b_fnclauses fcs)"
       
   604 | "b_fnclause (K x pat exp8) = {atom x}"
       
   605 thm alpha_exp8_raw_alpha_fnclause_raw_alpha_fnclauses_raw_alpha_lrb8_raw_alpha_lrbs8_raw_alpha_pat8_raw.intros
       
   606 
       
   607 
       
   608 
       
   609 
       
   610 (* example 9 from Peter Sewell's bestiary *)
       
   611 (* run out of steam at the moment *)
       
   612 
       
   613 end
       
   614 
       
   615 
       
   616