5 Nominal Isabelle. |
5 Nominal Isabelle. |
6 *) |
6 *) |
7 theory Nominal2_Supp |
7 theory Nominal2_Supp |
8 imports Nominal2_Base Nominal2_Eqvt |
8 imports Nominal2_Base Nominal2_Eqvt |
9 begin |
9 begin |
10 |
|
11 |
|
12 section {* Fresh-Star *} |
|
13 |
|
14 |
|
15 text {* The fresh-star generalisation of fresh is used in strong |
|
16 induction principles. *} |
|
17 |
|
18 definition |
|
19 fresh_star :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp>* _" [80,80] 80) |
|
20 where |
|
21 "as \<sharp>* x \<equiv> \<forall>a \<in> as. a \<sharp> x" |
|
22 |
|
23 lemma fresh_star_prod: |
|
24 fixes as::"atom set" |
|
25 shows "as \<sharp>* (x, y) = (as \<sharp>* x \<and> as \<sharp>* y)" |
|
26 by (auto simp add: fresh_star_def fresh_Pair) |
|
27 |
|
28 lemma fresh_star_union: |
|
29 shows "(as \<union> bs) \<sharp>* x = (as \<sharp>* x \<and> bs \<sharp>* x)" |
|
30 by (auto simp add: fresh_star_def) |
|
31 |
|
32 lemma fresh_star_insert: |
|
33 shows "(insert a as) \<sharp>* x = (a \<sharp> x \<and> as \<sharp>* x)" |
|
34 by (auto simp add: fresh_star_def) |
|
35 |
|
36 lemma fresh_star_Un_elim: |
|
37 "((as \<union> bs) \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (as \<sharp>* x \<Longrightarrow> bs \<sharp>* x \<Longrightarrow> PROP C)" |
|
38 unfolding fresh_star_def |
|
39 apply(rule) |
|
40 apply(erule meta_mp) |
|
41 apply(auto) |
|
42 done |
|
43 |
|
44 lemma fresh_star_insert_elim: |
|
45 "(insert a as \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (a \<sharp> x \<Longrightarrow> as \<sharp>* x \<Longrightarrow> PROP C)" |
|
46 unfolding fresh_star_def |
|
47 by rule (simp_all add: fresh_star_def) |
|
48 |
|
49 lemma fresh_star_empty_elim: |
|
50 "({} \<sharp>* x \<Longrightarrow> PROP C) \<equiv> PROP C" |
|
51 by (simp add: fresh_star_def) |
|
52 |
|
53 lemma fresh_star_unit_elim: |
|
54 shows "(a \<sharp>* () \<Longrightarrow> PROP C) \<equiv> PROP C" |
|
55 by (simp add: fresh_star_def fresh_unit) |
|
56 |
|
57 lemma fresh_star_prod_elim: |
|
58 shows "(a \<sharp>* (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp>* x \<Longrightarrow> a \<sharp>* y \<Longrightarrow> PROP C)" |
|
59 by (rule, simp_all add: fresh_star_prod) |
|
60 |
|
61 lemma fresh_star_zero: |
|
62 shows "as \<sharp>* (0::perm)" |
|
63 unfolding fresh_star_def |
|
64 by (simp add: fresh_zero_perm) |
|
65 |
|
66 lemma fresh_star_plus: |
|
67 fixes p q::perm |
|
68 shows "\<lbrakk>a \<sharp>* p; a \<sharp>* q\<rbrakk> \<Longrightarrow> a \<sharp>* (p + q)" |
|
69 unfolding fresh_star_def |
|
70 by (simp add: fresh_plus_perm) |
|
71 |
|
72 |
|
73 lemma fresh_star_permute_iff: |
|
74 shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x" |
|
75 unfolding fresh_star_def |
|
76 by (metis mem_permute_iff permute_minus_cancel(1) fresh_permute_iff) |
|
77 |
|
78 lemma fresh_star_eqvt[eqvt]: |
|
79 shows "(p \<bullet> (as \<sharp>* x)) = (p \<bullet> as) \<sharp>* (p \<bullet> x)" |
|
80 unfolding fresh_star_def |
|
81 unfolding Ball_def |
|
82 apply(simp add: all_eqvt) |
|
83 apply(subst permute_fun_def) |
|
84 apply(simp add: imp_eqvt fresh_eqvt mem_eqvt) |
|
85 done |
|
86 |
|
87 section {* Avoiding of atom sets *} |
|
88 |
|
89 text {* |
|
90 For every set of atoms, there is another set of atoms |
|
91 avoiding a finitely supported c and there is a permutation |
|
92 which 'translates' between both sets. |
|
93 *} |
|
94 |
|
95 lemma at_set_avoiding_aux: |
|
96 fixes Xs::"atom set" |
|
97 and As::"atom set" |
|
98 assumes b: "Xs \<subseteq> As" |
|
99 and c: "finite As" |
|
100 shows "\<exists>p. (p \<bullet> Xs) \<inter> As = {} \<and> (supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))" |
|
101 proof - |
|
102 from b c have "finite Xs" by (rule finite_subset) |
|
103 then show ?thesis using b |
|
104 proof (induct rule: finite_subset_induct) |
|
105 case empty |
|
106 have "0 \<bullet> {} \<inter> As = {}" by simp |
|
107 moreover |
|
108 have "supp (0::perm) \<subseteq> {} \<union> 0 \<bullet> {}" by (simp add: supp_zero_perm) |
|
109 ultimately show ?case by blast |
|
110 next |
|
111 case (insert x Xs) |
|
112 then obtain p where |
|
113 p1: "(p \<bullet> Xs) \<inter> As = {}" and |
|
114 p2: "supp p \<subseteq> (Xs \<union> (p \<bullet> Xs))" by blast |
|
115 from `x \<in> As` p1 have "x \<notin> p \<bullet> Xs" by fast |
|
116 with `x \<notin> Xs` p2 have "x \<notin> supp p" by fast |
|
117 hence px: "p \<bullet> x = x" unfolding supp_perm by simp |
|
118 have "finite (As \<union> p \<bullet> Xs)" |
|
119 using `finite As` `finite Xs` |
|
120 by (simp add: permute_set_eq_image) |
|
121 then obtain y where "y \<notin> (As \<union> p \<bullet> Xs)" "sort_of y = sort_of x" |
|
122 by (rule obtain_atom) |
|
123 hence y: "y \<notin> As" "y \<notin> p \<bullet> Xs" "sort_of y = sort_of x" |
|
124 by simp_all |
|
125 let ?q = "(x \<rightleftharpoons> y) + p" |
|
126 have q: "?q \<bullet> insert x Xs = insert y (p \<bullet> Xs)" |
|
127 unfolding insert_eqvt |
|
128 using `p \<bullet> x = x` `sort_of y = sort_of x` |
|
129 using `x \<notin> p \<bullet> Xs` `y \<notin> p \<bullet> Xs` |
|
130 by (simp add: swap_atom swap_set_not_in) |
|
131 have "?q \<bullet> insert x Xs \<inter> As = {}" |
|
132 using `y \<notin> As` `p \<bullet> Xs \<inter> As = {}` |
|
133 unfolding q by simp |
|
134 moreover |
|
135 have "supp ?q \<subseteq> insert x Xs \<union> ?q \<bullet> insert x Xs" |
|
136 using p2 unfolding q |
|
137 by (intro subset_trans [OF supp_plus_perm]) |
|
138 (auto simp add: supp_swap) |
|
139 ultimately show ?case by blast |
|
140 qed |
|
141 qed |
|
142 |
|
143 lemma at_set_avoiding: |
|
144 assumes a: "finite Xs" |
|
145 and b: "finite (supp c)" |
|
146 obtains p::"perm" where "(p \<bullet> Xs)\<sharp>*c" and "(supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))" |
|
147 using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \<union> supp c"] |
|
148 unfolding fresh_star_def fresh_def by blast |
|
149 |
|
150 lemma at_set_avoiding2: |
|
151 assumes "finite xs" |
|
152 and "finite (supp c)" "finite (supp x)" |
|
153 and "xs \<sharp>* x" |
|
154 shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p" |
|
155 using assms |
|
156 apply(erule_tac c="(c, x)" in at_set_avoiding) |
|
157 apply(simp add: supp_Pair) |
|
158 apply(rule_tac x="p" in exI) |
|
159 apply(simp add: fresh_star_prod) |
|
160 apply(subgoal_tac "\<forall>a \<in> supp p. a \<sharp> x") |
|
161 apply(auto simp add: fresh_star_def fresh_def supp_perm)[1] |
|
162 apply(auto simp add: fresh_star_def fresh_def) |
|
163 done |
|
164 |
|
165 lemma at_set_avoiding2_atom: |
|
166 assumes "finite (supp c)" "finite (supp x)" |
|
167 and b: "a \<sharp> x" |
|
168 shows "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p" |
|
169 proof - |
|
170 have a: "{a} \<sharp>* x" unfolding fresh_star_def by (simp add: b) |
|
171 obtain p where p1: "(p \<bullet> {a}) \<sharp>* c" and p2: "supp x \<sharp>* p" |
|
172 using at_set_avoiding2[of "{a}" "c" "x"] assms a by blast |
|
173 have c: "(p \<bullet> a) \<sharp> c" using p1 |
|
174 unfolding fresh_star_def Ball_def |
|
175 by(erule_tac x="p \<bullet> a" in allE) (simp add: permute_set_eq) |
|
176 hence "p \<bullet> a \<sharp> c \<and> supp x \<sharp>* p" using p2 by blast |
|
177 then show "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p" by blast |
|
178 qed |
|
179 |
|
180 |
|
181 section {* The freshness lemma according to Andy Pitts *} |
|
182 |
|
183 lemma freshness_lemma: |
|
184 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
185 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
186 shows "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
187 proof - |
|
188 from a obtain b where a1: "atom b \<sharp> h" and a2: "atom b \<sharp> h b" |
|
189 by (auto simp add: fresh_Pair) |
|
190 show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
191 proof (intro exI allI impI) |
|
192 fix a :: 'a |
|
193 assume a3: "atom a \<sharp> h" |
|
194 show "h a = h b" |
|
195 proof (cases "a = b") |
|
196 assume "a = b" |
|
197 thus "h a = h b" by simp |
|
198 next |
|
199 assume "a \<noteq> b" |
|
200 hence "atom a \<sharp> b" by (simp add: fresh_at_base) |
|
201 with a3 have "atom a \<sharp> h b" |
|
202 by (rule fresh_fun_app) |
|
203 with a2 have d1: "(atom b \<rightleftharpoons> atom a) \<bullet> (h b) = (h b)" |
|
204 by (rule swap_fresh_fresh) |
|
205 from a1 a3 have d2: "(atom b \<rightleftharpoons> atom a) \<bullet> h = h" |
|
206 by (rule swap_fresh_fresh) |
|
207 from d1 have "h b = (atom b \<rightleftharpoons> atom a) \<bullet> (h b)" by simp |
|
208 also have "\<dots> = ((atom b \<rightleftharpoons> atom a) \<bullet> h) ((atom b \<rightleftharpoons> atom a) \<bullet> b)" |
|
209 by (rule permute_fun_app_eq) |
|
210 also have "\<dots> = h a" |
|
211 using d2 by simp |
|
212 finally show "h a = h b" by simp |
|
213 qed |
|
214 qed |
|
215 qed |
|
216 |
|
217 lemma freshness_lemma_unique: |
|
218 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
219 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
220 shows "\<exists>!x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
221 proof (rule ex_ex1I) |
|
222 from a show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
223 by (rule freshness_lemma) |
|
224 next |
|
225 fix x y |
|
226 assume x: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
227 assume y: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = y" |
|
228 from a x y show "x = y" |
|
229 by (auto simp add: fresh_Pair) |
|
230 qed |
|
231 |
|
232 text {* packaging the freshness lemma into a function *} |
|
233 |
|
234 definition |
|
235 fresh_fun :: "('a::at \<Rightarrow> 'b::pt) \<Rightarrow> 'b" |
|
236 where |
|
237 "fresh_fun h = (THE x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x)" |
|
238 |
|
239 lemma fresh_fun_app: |
|
240 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
241 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
242 assumes b: "atom a \<sharp> h" |
|
243 shows "fresh_fun h = h a" |
|
244 unfolding fresh_fun_def |
|
245 proof (rule the_equality) |
|
246 show "\<forall>a'. atom a' \<sharp> h \<longrightarrow> h a' = h a" |
|
247 proof (intro strip) |
|
248 fix a':: 'a |
|
249 assume c: "atom a' \<sharp> h" |
|
250 from a have "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" by (rule freshness_lemma) |
|
251 with b c show "h a' = h a" by auto |
|
252 qed |
|
253 next |
|
254 fix fr :: 'b |
|
255 assume "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = fr" |
|
256 with b show "fr = h a" by auto |
|
257 qed |
|
258 |
|
259 lemma fresh_fun_app': |
|
260 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
261 assumes a: "atom a \<sharp> h" "atom a \<sharp> h a" |
|
262 shows "fresh_fun h = h a" |
|
263 apply (rule fresh_fun_app) |
|
264 apply (auto simp add: fresh_Pair intro: a) |
|
265 done |
|
266 |
|
267 lemma fresh_fun_eqvt: |
|
268 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
269 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
270 shows "p \<bullet> (fresh_fun h) = fresh_fun (p \<bullet> h)" |
|
271 using a |
|
272 apply (clarsimp simp add: fresh_Pair) |
|
273 apply (subst fresh_fun_app', assumption+) |
|
274 apply (drule fresh_permute_iff [where p=p, THEN iffD2]) |
|
275 apply (drule fresh_permute_iff [where p=p, THEN iffD2]) |
|
276 apply (simp add: atom_eqvt permute_fun_app_eq [where f=h]) |
|
277 apply (erule (1) fresh_fun_app' [symmetric]) |
|
278 done |
|
279 |
|
280 lemma fresh_fun_supports: |
|
281 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
282 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
283 shows "(supp h) supports (fresh_fun h)" |
|
284 apply (simp add: supports_def fresh_def [symmetric]) |
|
285 apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh) |
|
286 done |
|
287 |
|
288 notation fresh_fun (binder "FRESH " 10) |
|
289 |
|
290 lemma FRESH_f_iff: |
|
291 fixes P :: "'a::at \<Rightarrow> 'b::pure" |
|
292 fixes f :: "'b \<Rightarrow> 'c::pure" |
|
293 assumes P: "finite (supp P)" |
|
294 shows "(FRESH x. f (P x)) = f (FRESH x. P x)" |
|
295 proof - |
|
296 obtain a::'a where "atom a \<notin> supp P" |
|
297 using P by (rule obtain_at_base) |
|
298 hence "atom a \<sharp> P" |
|
299 by (simp add: fresh_def) |
|
300 show "(FRESH x. f (P x)) = f (FRESH x. P x)" |
|
301 apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh]) |
|
302 apply (cut_tac `atom a \<sharp> P`) |
|
303 apply (simp add: fresh_conv_MOST) |
|
304 apply (elim MOST_rev_mp, rule MOST_I, clarify) |
|
305 apply (simp add: permute_fun_def permute_pure expand_fun_eq) |
|
306 apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> P` pure_fresh]) |
|
307 apply (rule refl) |
|
308 done |
|
309 qed |
|
310 |
|
311 lemma FRESH_binop_iff: |
|
312 fixes P :: "'a::at \<Rightarrow> 'b::pure" |
|
313 fixes Q :: "'a::at \<Rightarrow> 'c::pure" |
|
314 fixes binop :: "'b \<Rightarrow> 'c \<Rightarrow> 'd::pure" |
|
315 assumes P: "finite (supp P)" |
|
316 and Q: "finite (supp Q)" |
|
317 shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)" |
|
318 proof - |
|
319 from assms have "finite (supp P \<union> supp Q)" by simp |
|
320 then obtain a::'a where "atom a \<notin> (supp P \<union> supp Q)" |
|
321 by (rule obtain_at_base) |
|
322 hence "atom a \<sharp> P" and "atom a \<sharp> Q" |
|
323 by (simp_all add: fresh_def) |
|
324 show ?thesis |
|
325 apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh]) |
|
326 apply (cut_tac `atom a \<sharp> P` `atom a \<sharp> Q`) |
|
327 apply (simp add: fresh_conv_MOST) |
|
328 apply (elim MOST_rev_mp, rule MOST_I, clarify) |
|
329 apply (simp add: permute_fun_def permute_pure expand_fun_eq) |
|
330 apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> P` pure_fresh]) |
|
331 apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> Q` pure_fresh]) |
|
332 apply (rule refl) |
|
333 done |
|
334 qed |
|
335 |
|
336 lemma FRESH_conj_iff: |
|
337 fixes P Q :: "'a::at \<Rightarrow> bool" |
|
338 assumes P: "finite (supp P)" and Q: "finite (supp Q)" |
|
339 shows "(FRESH x. P x \<and> Q x) \<longleftrightarrow> (FRESH x. P x) \<and> (FRESH x. Q x)" |
|
340 using P Q by (rule FRESH_binop_iff) |
|
341 |
|
342 lemma FRESH_disj_iff: |
|
343 fixes P Q :: "'a::at \<Rightarrow> bool" |
|
344 assumes P: "finite (supp P)" and Q: "finite (supp Q)" |
|
345 shows "(FRESH x. P x \<or> Q x) \<longleftrightarrow> (FRESH x. P x) \<or> (FRESH x. Q x)" |
|
346 using P Q by (rule FRESH_binop_iff) |
|
347 |
|
348 |
|
349 section {* @{const nat_of} is an example of a function |
|
350 without finite support *} |
|
351 |
|
352 |
|
353 lemma not_fresh_nat_of: |
|
354 shows "\<not> a \<sharp> nat_of" |
|
355 unfolding fresh_def supp_def |
|
356 proof (clarsimp) |
|
357 assume "finite {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of}" |
|
358 hence "finite ({a} \<union> {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of})" |
|
359 by simp |
|
360 then obtain b where |
|
361 b1: "b \<noteq> a" and |
|
362 b2: "sort_of b = sort_of a" and |
|
363 b3: "(a \<rightleftharpoons> b) \<bullet> nat_of = nat_of" |
|
364 by (rule obtain_atom) auto |
|
365 have "nat_of a = (a \<rightleftharpoons> b) \<bullet> (nat_of a)" by (simp add: permute_nat_def) |
|
366 also have "\<dots> = ((a \<rightleftharpoons> b) \<bullet> nat_of) ((a \<rightleftharpoons> b) \<bullet> a)" by (simp add: permute_fun_app_eq) |
|
367 also have "\<dots> = nat_of ((a \<rightleftharpoons> b) \<bullet> a)" using b3 by simp |
|
368 also have "\<dots> = nat_of b" using b2 by simp |
|
369 finally have "nat_of a = nat_of b" by simp |
|
370 with b2 have "a = b" by (simp add: atom_components_eq_iff) |
|
371 with b1 show "False" by simp |
|
372 qed |
|
373 |
|
374 lemma supp_nat_of: |
|
375 shows "supp nat_of = UNIV" |
|
376 using not_fresh_nat_of [unfolded fresh_def] by auto |
|
377 |
|
378 |
10 |
379 section {* Induction principle for permutations *} |
11 section {* Induction principle for permutations *} |
380 |
12 |
381 |
13 |
382 lemma perm_struct_induct[consumes 1, case_names zero swap]: |
14 lemma perm_struct_induct[consumes 1, case_names zero swap]: |