Nominal/Ex/CPS/Lt.thy
changeset 2864 bb647489f130
parent 2861 5635a968fd3f
child 2898 a95a497e1f4f
equal deleted inserted replaced
2863:74e5de79479d 2864:bb647489f130
       
     1 header {* The Call-by-Value Lambda Calculus *}
       
     2 theory Lt
       
     3 imports Nominal2
       
     4 begin
       
     5 
       
     6 atom_decl name
       
     7 
       
     8 nominal_datatype lt =
       
     9     Var name       ("_~"  [150] 149)
       
    10   | Abs x::"name" t::"lt"  bind  x in t
       
    11   | App lt lt         (infixl "$" 100)
       
    12 
       
    13 nominal_primrec
       
    14   subst :: "lt \<Rightarrow> lt \<Rightarrow> name \<Rightarrow> lt" ("_[_'/_]" [200,0,0] 190)
       
    15 where
       
    16   "(y~)[L/x] = (if y = x then L else y~)"
       
    17 | "atom y\<sharp>L \<Longrightarrow> atom y\<sharp>x \<Longrightarrow> (Abs y M)[L/x]  = Abs y (M[L/x])"
       
    18 | "(M $ N)[L/x] = M[L/x] $ N[L/x]"
       
    19   unfolding eqvt_def subst_graph_def
       
    20   apply(perm_simp)
       
    21   apply(auto)
       
    22   apply(rule_tac y="a" and c="(aa, b)" in lt.strong_exhaust)
       
    23   apply(simp_all add: fresh_star_def fresh_Pair)
       
    24   apply blast+
       
    25   apply (erule Abs_lst1_fcb)
       
    26   apply (simp_all add: Abs_fresh_iff)[2]
       
    27   apply(drule_tac a="atom (ya)" in fresh_eqvt_at)
       
    28   apply(simp add: finite_supp fresh_Pair)
       
    29   apply(simp_all add: fresh_Pair Abs_fresh_iff)
       
    30   apply(subgoal_tac "(atom y \<rightleftharpoons> atom ya) \<bullet> La = La")
       
    31   apply(subgoal_tac "(atom y \<rightleftharpoons> atom ya) \<bullet> xa = xa")
       
    32   apply(simp add: atom_eqvt eqvt_at_def Abs1_eq_iff swap_commute)
       
    33   apply (simp_all add: swap_fresh_fresh)
       
    34   done
       
    35 
       
    36 termination
       
    37   by (relation "measure (\<lambda>(t, _, _). size t)")
       
    38      (simp_all add: lt.size)
       
    39 
       
    40 lemma subst_eqvt[eqvt]:
       
    41   shows "p\<bullet>(M[V/(x::name)]) = (p\<bullet>M)[(p\<bullet>V)/(p\<bullet>x)]"
       
    42   by (induct M V x rule: subst.induct) (simp_all)
       
    43 
       
    44 lemma forget[simp]:
       
    45   shows "atom x \<sharp> M \<Longrightarrow> M[s/x] = M"
       
    46   by (nominal_induct M avoiding: x s rule: lt.strong_induct)
       
    47      (auto simp add: lt.fresh fresh_at_base)
       
    48 
       
    49 lemma [simp]: "supp ( M[V/(x::name)] ) <= (supp(M) - {atom x}) Un (supp V)"
       
    50   by (nominal_induct M avoiding: x V rule: lt.strong_induct)
       
    51      (auto simp add: lt.supp supp_at_base, blast, blast)
       
    52 
       
    53 nominal_primrec 
       
    54   isValue:: "lt => bool"
       
    55 where
       
    56   "isValue (Var x) = True"
       
    57 | "isValue (Abs y N) = True"
       
    58 | "isValue (A $ B) = False"
       
    59   unfolding eqvt_def isValue_graph_def
       
    60   by (perm_simp, auto)
       
    61      (erule lt.exhaust, auto)
       
    62 
       
    63 termination
       
    64   by (relation "measure size")
       
    65      (simp_all add: lt.size)
       
    66 
       
    67 lemma is_Value_eqvt[eqvt]:
       
    68   shows "p\<bullet>(isValue (M::lt)) = isValue (p\<bullet>M)"
       
    69   by (induct M rule: lt.induct) (simp_all add: eqvts)
       
    70 
       
    71 inductive
       
    72   eval :: "[lt, lt] \<Rightarrow> bool" (" _ \<longrightarrow>\<^isub>\<beta> _" [80,80] 80)
       
    73   where
       
    74    evbeta: "\<lbrakk>atom x\<sharp>V; isValue V\<rbrakk> \<Longrightarrow> ((Abs x M) $ V) \<longrightarrow>\<^isub>\<beta> (M[V/x])"
       
    75 |  ev1: "\<lbrakk>isValue V; M \<longrightarrow>\<^isub>\<beta> M' \<rbrakk> \<Longrightarrow> (V $ M) \<longrightarrow>\<^isub>\<beta> (V $ M')"
       
    76 |  ev2: "M \<longrightarrow>\<^isub>\<beta> M' \<Longrightarrow> (M $ N) \<longrightarrow>\<^isub>\<beta> (M' $ N)"
       
    77 
       
    78 equivariance eval
       
    79 
       
    80 nominal_inductive eval
       
    81 done
       
    82 
       
    83 (*lemmas [simp] = lt.supp(2)*)
       
    84 
       
    85 lemma closedev1: assumes "s \<longrightarrow>\<^isub>\<beta> t"
       
    86   shows "supp t <= supp s"
       
    87   using assms
       
    88     by (induct, auto simp add: lt.supp)
       
    89 
       
    90 
       
    91 lemma [simp]: "~ ((Abs x M) \<longrightarrow>\<^isub>\<beta> N)"
       
    92 by (rule, erule eval.cases, simp_all)
       
    93 
       
    94 lemma [simp]: assumes "M \<longrightarrow>\<^isub>\<beta> N" shows "~ isValue M"
       
    95 using assms
       
    96 by (cases, auto)
       
    97 
       
    98 
       
    99 inductive
       
   100   eval_star :: "[lt, lt] \<Rightarrow> bool" (" _ \<longrightarrow>\<^isub>\<beta>\<^sup>* _" [80,80] 80)
       
   101   where
       
   102    evs1: "M \<longrightarrow>\<^isub>\<beta>\<^sup>* M"
       
   103 |  evs2: "\<lbrakk>M \<longrightarrow>\<^isub>\<beta> M'; M' \<longrightarrow>\<^isub>\<beta>\<^sup>*  M'' \<rbrakk> \<Longrightarrow> M \<longrightarrow>\<^isub>\<beta>\<^sup>*  M''"
       
   104 
       
   105 lemma eval_evs: assumes *: "M \<longrightarrow>\<^isub>\<beta> M'" shows "M \<longrightarrow>\<^isub>\<beta>\<^sup>* M'"
       
   106 by (rule evs2, rule *, rule evs1)
       
   107 
       
   108 lemma eval_trans[trans]:
       
   109   assumes "M1  \<longrightarrow>\<^isub>\<beta>\<^sup>* M2"
       
   110       and "M2  \<longrightarrow>\<^isub>\<beta>\<^sup>*  M3"
       
   111   shows "M1  \<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
       
   112   using assms
       
   113   by (induct, auto intro: evs2)
       
   114 
       
   115 lemma evs3[rule_format]: assumes "M1  \<longrightarrow>\<^isub>\<beta>\<^sup>* M2"
       
   116   shows "M2  \<longrightarrow>\<^isub>\<beta> M3 \<longrightarrow> M1  \<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
       
   117   using assms
       
   118     by (induct, auto intro: eval_evs evs2)
       
   119 
       
   120 equivariance eval_star
       
   121 
       
   122 lemma evbeta':
       
   123   fixes x :: name
       
   124   assumes "isValue V" and "atom x\<sharp>V" and "N = (M[V/x])"
       
   125   shows "((Abs x M) $ V) \<longrightarrow>\<^isub>\<beta>\<^sup>* N"
       
   126   using assms by simp (rule evs2, rule evbeta, simp_all add: evs1)
       
   127 
       
   128 end
       
   129 
       
   130 
       
   131