Nominal/Ex/CPS/CPS3_DanvyFilinski.thy
changeset 2864 bb647489f130
parent 2861 5635a968fd3f
child 2866 9f667f6da04f
equal deleted inserted replaced
2863:74e5de79479d 2864:bb647489f130
       
     1 header {* CPS transformation of Danvy and Filinski *}
       
     2 theory DanvyFilinski imports Lt begin
       
     3 
       
     4 nominal_primrec
       
     5   CPS1 :: "lt \<Rightarrow> (lt \<Rightarrow> lt) \<Rightarrow> lt" ("_*_"  [100,100] 100)
       
     6 and
       
     7   CPS2 :: "lt \<Rightarrow> lt \<Rightarrow> lt" ("_^_" [100,100] 100)
       
     8 where
       
     9   "eqvt k \<Longrightarrow> (x~)*k = k (x~)"
       
    10 | "eqvt k \<Longrightarrow> (M$N)*k = M*(%m. (N*(%n.((m $ n) $ (Abs c (k (c~)))))))"
       
    11 | "eqvt k \<Longrightarrow> atom c \<sharp> (x, M) \<Longrightarrow> (Abs x M)*k = k (Abs x (Abs c (M^(c~))))"
       
    12 | "\<not>eqvt k \<Longrightarrow> (CPS1 t k) = t"
       
    13 | "(x~)^l = l $ (x~)"
       
    14 | "(M$N)^l = M*(%m. (N*(%n.((m $ n) $ l))))"
       
    15 | "atom c \<sharp> (x, M) \<Longrightarrow> (Abs x M)^l = l $ (Abs x (Abs c (M^(c~))))"
       
    16   apply (simp only: eqvt_def CPS1_CPS2_graph_def)
       
    17   apply (rule, perm_simp, rule)
       
    18   apply auto
       
    19   apply (case_tac x)
       
    20   apply (case_tac a)
       
    21   apply (case_tac "eqvt b")
       
    22   apply (rule_tac y="aa" in lt.strong_exhaust)
       
    23   apply auto[4]
       
    24   apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
       
    25   apply (simp add: fresh_at_base Abs1_eq_iff)
       
    26   apply (case_tac b)
       
    27   apply (rule_tac y="a" in lt.strong_exhaust)
       
    28   apply auto[3]
       
    29   apply blast
       
    30   apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) 
       
    31   apply (simp add: fresh_at_base Abs1_eq_iff)
       
    32   apply blast
       
    33 --"-"
       
    34   apply (subgoal_tac "Abs c (ka (c~)) = Abs ca (ka (ca~))")
       
    35   apply (simp only:)
       
    36   apply (simp add: Abs1_eq_iff)
       
    37   apply (case_tac "c=ca")
       
    38   apply simp_all[2]
       
    39   apply rule
       
    40   apply (perm_simp)
       
    41   apply (simp add: eqvt_def)
       
    42   apply (simp add: fresh_def)
       
    43   apply (rule contra_subsetD[OF supp_fun_app])
       
    44   back
       
    45   apply (simp add: supp_fun_eqvt lt.supp supp_at_base)
       
    46 --"-"
       
    47   apply (rule arg_cong)
       
    48   back
       
    49   apply simp
       
    50   apply (thin_tac "eqvt ka")
       
    51   apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh)
       
    52   apply (subgoal_tac "eqvt_at CPS1_CPS2_sumC (Inr (Ma, ca~))")
       
    53   apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))")
       
    54   prefer 2
       
    55   apply (simp add: Abs1_eq_iff')
       
    56   apply (case_tac "c = a")
       
    57   apply simp_all[2]
       
    58   apply rule
       
    59   apply (simp add: eqvt_at_def)
       
    60   apply (simp add: swap_fresh_fresh fresh_Pair_elim)
       
    61   apply (erule fresh_eqvt_at)
       
    62   apply (simp add: supp_Inr finite_supp)
       
    63   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
       
    64   apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))")
       
    65   prefer 2
       
    66   apply (simp add: Abs1_eq_iff')
       
    67   apply (case_tac "ca = a")
       
    68   apply simp_all[2]
       
    69   apply rule
       
    70   apply (simp add: eqvt_at_def)
       
    71   apply (simp add: swap_fresh_fresh fresh_Pair_elim)
       
    72   apply (erule fresh_eqvt_at)
       
    73   apply (simp add: supp_Inr finite_supp)
       
    74   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
       
    75   apply (simp only: )
       
    76   apply (erule Abs_lst1_fcb)
       
    77   apply (simp add: Abs_fresh_iff)
       
    78   apply (drule sym)
       
    79   apply (simp only:)
       
    80   apply (simp add: Abs_fresh_iff lt.fresh)
       
    81   apply clarify
       
    82   apply (erule fresh_eqvt_at)
       
    83   apply (simp add: supp_Inr finite_supp)
       
    84   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
       
    85   apply (drule sym)
       
    86   apply (drule sym)
       
    87   apply (drule sym)
       
    88   apply (simp only:)
       
    89   apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))")
       
    90   apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))")
       
    91   apply (thin_tac "atom a \<sharp> (c, ca, x, xa, M, Ma)")
       
    92   apply (simp add: fresh_Pair_elim)
       
    93   apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]])
       
    94   back
       
    95   back
       
    96   back
       
    97   apply assumption
       
    98   apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh)
       
    99   apply (case_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> c = ca")
       
   100   apply simp_all[3]
       
   101   apply rule
       
   102   apply (case_tac "c = xa")
       
   103   apply simp_all[2]
       
   104   apply (simp add: eqvt_at_def)
       
   105   apply clarify
       
   106   apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh)
       
   107   apply (simp add: eqvt_at_def)
       
   108   apply clarify
       
   109   apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh)
       
   110   apply (case_tac "c = xa")
       
   111   apply simp
       
   112   apply (subgoal_tac "((ca \<leftrightarrow> x) \<bullet> (atom x)) \<sharp> (ca \<leftrightarrow> x) \<bullet> CPS1_CPS2_sumC (Inr (Ma, ca~))")
       
   113   apply (simp add: atom_eqvt eqvt_at_def)
       
   114   apply (simp add: flip_fresh_fresh)
       
   115   apply (subst fresh_permute_iff)
       
   116   apply (erule fresh_eqvt_at)
       
   117   apply (simp add: supp_Inr finite_supp)
       
   118   apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair)
       
   119   apply simp
       
   120   apply clarify
       
   121   apply (subgoal_tac "atom ca \<sharp> (atom x \<rightleftharpoons> atom xa) \<bullet> CPS1_CPS2_sumC (Inr (M, c~))")
       
   122   apply (simp add: eqvt_at_def)
       
   123   apply (subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> atom ca \<sharp> CPS1_CPS2_sumC (Inr (M, c~))")
       
   124   apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
       
   125   apply (erule fresh_eqvt_at)
       
   126   apply (simp add: finite_supp supp_Inr)
       
   127   apply (simp add: fresh_Inr fresh_Pair lt.fresh)
       
   128   apply rule
       
   129   apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
       
   130   apply (simp add: fresh_def supp_at_base)
       
   131   apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3))
       
   132 --"-"
       
   133   prefer 2
       
   134   apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh)
       
   135   apply (subgoal_tac "eqvt_at CPS1_CPS2_sumC (Inr (Ma, ca~))")
       
   136   apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))")
       
   137   prefer 2
       
   138   apply (simp add: Abs1_eq_iff')
       
   139   apply (case_tac "c = a")
       
   140   apply simp_all[2]
       
   141   apply rule
       
   142   apply (simp add: eqvt_at_def)
       
   143   apply (simp add: swap_fresh_fresh fresh_Pair_elim)
       
   144   apply (erule fresh_eqvt_at)
       
   145   apply (simp add: supp_Inr finite_supp)
       
   146   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
       
   147   apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))")
       
   148   prefer 2
       
   149   apply (simp add: Abs1_eq_iff')
       
   150   apply (case_tac "ca = a")
       
   151   apply simp_all[2]
       
   152   apply rule
       
   153   apply (simp add: eqvt_at_def)
       
   154   apply (simp add: swap_fresh_fresh fresh_Pair_elim)
       
   155   apply (erule fresh_eqvt_at)
       
   156   apply (simp add: supp_Inr finite_supp)
       
   157   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
       
   158   apply (simp only: )
       
   159   apply (erule Abs_lst1_fcb)
       
   160   apply (simp add: Abs_fresh_iff)
       
   161   apply (drule sym)
       
   162   apply (simp only:)
       
   163   apply (simp add: Abs_fresh_iff lt.fresh)
       
   164   apply clarify
       
   165   apply (erule fresh_eqvt_at)
       
   166   apply (simp add: supp_Inr finite_supp)
       
   167   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
       
   168   apply (drule sym)
       
   169   apply (drule sym)
       
   170   apply (drule sym)
       
   171   apply (simp only:)
       
   172   apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))")
       
   173   apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))")
       
   174   apply (thin_tac "atom a \<sharp> (c, ca, x, xa, M, Ma)")
       
   175   apply (simp add: fresh_Pair_elim)
       
   176   apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]])
       
   177   back
       
   178   back
       
   179   back
       
   180   apply assumption
       
   181   apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh)
       
   182   apply (case_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> c = ca")
       
   183   apply simp_all[3]
       
   184   apply rule
       
   185   apply (case_tac "c = xa")
       
   186   apply simp_all[2]
       
   187   apply (simp add: eqvt_at_def)
       
   188   apply clarify
       
   189   apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh)
       
   190   apply (simp add: eqvt_at_def)
       
   191   apply clarify
       
   192   apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh)
       
   193   apply (case_tac "c = xa")
       
   194   apply simp
       
   195   apply (subgoal_tac "((ca \<leftrightarrow> x) \<bullet> (atom x)) \<sharp> (ca \<leftrightarrow> x) \<bullet> CPS1_CPS2_sumC (Inr (Ma, ca~))")
       
   196   apply (simp add: atom_eqvt eqvt_at_def)
       
   197   apply (simp add: flip_fresh_fresh)
       
   198   apply (subst fresh_permute_iff)
       
   199   apply (erule fresh_eqvt_at)
       
   200   apply (simp add: supp_Inr finite_supp)
       
   201   apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair)
       
   202   apply simp
       
   203   apply clarify
       
   204   apply (subgoal_tac "atom ca \<sharp> (atom x \<rightleftharpoons> atom xa) \<bullet> CPS1_CPS2_sumC (Inr (M, c~))")
       
   205   apply (simp add: eqvt_at_def)
       
   206   apply (subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> atom ca \<sharp> CPS1_CPS2_sumC (Inr (M, c~))")
       
   207   apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
       
   208   apply (erule fresh_eqvt_at)
       
   209   apply (simp add: finite_supp supp_Inr)
       
   210   apply (simp add: fresh_Inr fresh_Pair lt.fresh)
       
   211   apply rule
       
   212   apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
       
   213   apply (simp add: fresh_def supp_at_base)
       
   214   apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3))
       
   215 --"Only left subgoals are eqvt for the other side"
       
   216   oops
       
   217 
       
   218 (*termination
       
   219   sorry
       
   220 
       
   221 definition psi:: "lt => lt"
       
   222   where "psi V == V*(\<lambda>x. x)"
       
   223 
       
   224 section {* Simple consequence of CPS *}
       
   225 
       
   226 lemma value_eq1 : "isValue V \<Longrightarrow> eqvt k \<Longrightarrow> V*k = k (psi V)"
       
   227   apply (cases V rule: lt.exhaust)
       
   228   apply (auto simp add: psi_def)
       
   229   apply (subst CPS1.simps)
       
   230   apply (simp add: eqvt_def eqvt_bound eqvt_lambda)
       
   231   apply rule
       
   232   apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
       
   233   apply (subst CPS1.simps(3))
       
   234   apply assumption+
       
   235   apply (subst CPS1.simps(3))
       
   236   apply (simp add: eqvt_def eqvt_bound eqvt_lambda)
       
   237   apply assumption
       
   238   apply rule
       
   239   done
       
   240 *)
       
   241 
       
   242 end
       
   243 
       
   244 
       
   245