Nominal/Ex/CPS/CPS2_DanvyNielsen.thy
changeset 2864 bb647489f130
parent 2861 5635a968fd3f
child 2869 9c0df9901acf
equal deleted inserted replaced
2863:74e5de79479d 2864:bb647489f130
       
     1 header {* CPS transformation of Danvy and Nielsen *}
       
     2 theory DanvyNielsen
       
     3 imports Lt
       
     4 begin
       
     5 
       
     6 nominal_datatype cpsctxt =
       
     7   Hole
       
     8 | CFun cpsctxt lt
       
     9 | CArg lt cpsctxt
       
    10 | CAbs x::name c::cpsctxt bind x in c
       
    11 
       
    12 nominal_primrec
       
    13   fill   :: "cpsctxt \<Rightarrow> lt \<Rightarrow> lt"         ("_<_>" [200, 200] 100)
       
    14 where
       
    15   fill_hole : "Hole<M> = M"
       
    16 | fill_fun  : "(CFun C N)<M> = (C<M>) $ N"
       
    17 | fill_arg  : "(CArg N C)<M> = N $ (C<M>)"
       
    18 | fill_abs  : "atom x \<sharp> M \<Longrightarrow> (CAbs x C)<M> = Abs x (C<M>)"
       
    19   unfolding eqvt_def fill_graph_def
       
    20   apply perm_simp
       
    21   apply auto
       
    22   apply (rule_tac y="a" and c="b" in cpsctxt.strong_exhaust)
       
    23   apply (auto simp add: fresh_star_def)
       
    24   apply (erule Abs_lst1_fcb)
       
    25   apply (simp_all add: Abs_fresh_iff)
       
    26   apply (erule fresh_eqvt_at)
       
    27   apply (simp add: finite_supp)
       
    28   apply (simp add: fresh_Pair)
       
    29   apply (simp add: eqvt_at_def swap_fresh_fresh)
       
    30   done
       
    31 
       
    32 termination
       
    33   by (relation "measure (\<lambda>(x, _). size x)") (auto simp add: cpsctxt.size)
       
    34 
       
    35 lemma [eqvt]: "p \<bullet> fill c t = fill (p \<bullet> c) (p \<bullet> t)"
       
    36   by (nominal_induct c avoiding: t rule: cpsctxt.strong_induct) simp_all
       
    37 
       
    38 nominal_primrec
       
    39   ccomp :: "cpsctxt => cpsctxt => cpsctxt"
       
    40 where
       
    41   "ccomp Hole C  = C"
       
    42 | "atom x \<sharp> C' \<Longrightarrow> ccomp (CAbs x C) C' = CAbs x (ccomp C C')"
       
    43 | "ccomp (CArg N C) C' = CArg N (ccomp C C')"
       
    44 | "ccomp (CFun C N) C'  = CFun (ccomp C C') N"
       
    45   unfolding eqvt_def ccomp_graph_def
       
    46   apply perm_simp
       
    47   apply auto
       
    48   apply (rule_tac y="a" and c="b" in cpsctxt.strong_exhaust)
       
    49   apply (auto simp add: fresh_star_def)
       
    50   apply blast+
       
    51   apply (erule Abs_lst1_fcb)
       
    52   apply (simp_all add: Abs_fresh_iff)
       
    53   apply (erule fresh_eqvt_at)
       
    54   apply (simp add: finite_supp)
       
    55   apply (simp add: fresh_Pair)
       
    56   apply (simp add: eqvt_at_def swap_fresh_fresh)
       
    57   done
       
    58 
       
    59 termination
       
    60   by (relation "measure (\<lambda>(x, _). size x)") (auto simp add: cpsctxt.size)
       
    61 
       
    62 lemma [eqvt]: "p \<bullet> ccomp c c' = ccomp (p \<bullet> c) (p \<bullet> c')"
       
    63   by (nominal_induct c avoiding: c' rule: cpsctxt.strong_induct) simp_all
       
    64 
       
    65 nominal_primrec
       
    66     CPSv :: "lt => lt"
       
    67 and CPS :: "lt => cpsctxt" where
       
    68   "CPSv (Var x) = x~"
       
    69 | "CPS (Var x) = CFun Hole (x~)"
       
    70 | "atom b \<sharp> M \<Longrightarrow> CPSv (Abs y M) = Abs y (Abs b ((CPS M)<Var b>))"
       
    71 | "atom b \<sharp> M \<Longrightarrow> CPS (Abs y M) = CFun Hole (Abs y (Abs b ((CPS M)<Var b>)))"
       
    72 | "CPSv (M $ N) = Abs x (Var x)"
       
    73 | "isValue M \<Longrightarrow> isValue N \<Longrightarrow> CPS (M $ N) = CArg (CPSv M $ CPSv N) Hole"
       
    74 | "isValue M \<Longrightarrow> ~isValue N \<Longrightarrow> atom a \<sharp> N \<Longrightarrow> CPS (M $ N) =
       
    75      ccomp (CPS N) (CAbs a (CArg (CPSv M $ Var a) Hole))"
       
    76 | "~isValue M \<Longrightarrow> isValue N \<Longrightarrow> atom a \<sharp> N \<Longrightarrow> CPS (M $ N) =
       
    77      ccomp (CPS M) (CAbs a (CArg (Var a $ (CPSv N)) Hole))"
       
    78 | "~isValue M \<Longrightarrow> ~isValue N \<Longrightarrow> atom a \<sharp> (N, b) \<Longrightarrow> CPS (M $ N) =
       
    79      ccomp (CPS M) (CAbs a (ccomp (CPS N) (CAbs b (CArg (Var a $ Var b) Hole))))"
       
    80   apply auto
       
    81   oops --"The goals seem reasonable"
       
    82 
       
    83 end