Nominal/Ex/Let.thy
changeset 2722 ba34f893539a
parent 2720 3dd6d524dfdd
child 2842 43bb260ef290
equal deleted inserted replaced
2721:af5bbc257f7f 2722:ba34f893539a
    98 | "subst s t (App l r) = App (subst s t l) (subst s t r)"
    98 | "subst s t (App l r) = App (subst s t l) (subst s t r)"
    99 | "atom v \<sharp> (s, t) \<Longrightarrow> subst s t (Lam v b) = Lam v (subst s t b)"
    99 | "atom v \<sharp> (s, t) \<Longrightarrow> subst s t (Lam v b) = Lam v (subst s t b)"
   100 | "set (bn as) \<sharp>* (s, t) \<Longrightarrow> subst s t (Let as b) = Let (substa s t as) (subst s t b)"
   100 | "set (bn as) \<sharp>* (s, t) \<Longrightarrow> subst s t (Let as b) = Let (substa s t as) (subst s t b)"
   101 | "substa s t ANil = ANil"
   101 | "substa s t ANil = ANil"
   102 | "substa s t (ACons v t' as) = ACons v (subst v t t') as"
   102 | "substa s t (ACons v t' as) = ACons v (subst v t t') as"
       
   103 oops
   103 
   104 
   104 (*apply (subgoal_tac "\<forall>l. \<exists>!r. subst_substa_graph l r")
   105 (*apply (subgoal_tac "\<forall>l. \<exists>!r. subst_substa_graph l r")
   105 defer
   106 defer
   106 apply rule
   107 apply rule
   107 apply (simp only: Ex1_def)
   108 apply (simp only: Ex1_def)
   111 apply simp_all[3]
   112 apply simp_all[3]
   112 apply rule
   113 apply rule
   113 apply rule
   114 apply rule
   114 apply (rule subst_substa_graph.intros)*)
   115 apply (rule subst_substa_graph.intros)*)
   115 
   116 
       
   117 (*
   116 defer
   118 defer
   117 apply (case_tac x)
   119 apply (case_tac x)
   118 apply (case_tac a)
   120 apply (case_tac a)
   119 thm trm_assn.strong_exhaust(1)
   121 thm trm_assn.strong_exhaust(1)
   120 apply (rule_tac y="c" and c="(aa,b)" in trm_assn.strong_exhaust(1))
   122 apply (rule_tac y="c" and c="(aa,b)" in trm_assn.strong_exhaust(1))
   161 
   163 
   162 alpha_bn (Acons s (subst a t t') a1)
   164 alpha_bn (Acons s (subst a t t') a1)
   163          (Acons s (subst a t t') a2)
   165          (Acons s (subst a t t') a2)
   164 
   166 
   165 ACons v (subst v t t') as"
   167 ACons v (subst v t t') as"
   166 
   168 *)
   167 end
   169 end
   168 
   170 
   169 
   171 
   170 
   172