Nominal/Term5.thy
changeset 1489 b9caceeec805
parent 1474 8a03753e0e02
child 1575 2c37f5a8c747
equal deleted inserted replaced
1488:44e68ab6841e 1489:b9caceeec805
    69 
    69 
    70 lemma alpha5_symp:
    70 lemma alpha5_symp:
    71 "(a \<approx>5 b \<longrightarrow> b \<approx>5 a) \<and>
    71 "(a \<approx>5 b \<longrightarrow> b \<approx>5 a) \<and>
    72 (x \<approx>l y \<longrightarrow> y \<approx>l x) \<and>
    72 (x \<approx>l y \<longrightarrow> y \<approx>l x) \<and>
    73 (alpha_rbv5 x y \<longrightarrow> alpha_rbv5 y x)"
    73 (alpha_rbv5 x y \<longrightarrow> alpha_rbv5 y x)"
       
    74 apply (tactic {* symp_tac @{thm alpha_rtrm5_alpha_rlts_alpha_rbv5.induct} @{thms alpha5_inj} @{thms alpha5_eqvt} @{context} 1 *})
       
    75 (*
    74 apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct)
    76 apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct)
    75 apply (simp_all add: alpha5_inj)
    77 apply (simp_all add: alpha5_inj)
    76 apply (erule exE)
    78 apply (erule exE)
    77 apply (rule_tac x="- pi" in exI)
    79 apply (rule_tac x="- pi" in exI)
    78 apply (simp add: alpha_gen)
    80 apply (simp add: alpha_gen)
    87 apply (frule_tac p="- pi" in alpha5_eqvt(1))
    89 apply (frule_tac p="- pi" in alpha5_eqvt(1))
    88 apply simp
    90 apply simp
    89 apply (rotate_tac 6)
    91 apply (rotate_tac 6)
    90 apply simp
    92 apply simp
    91 apply (drule_tac p1="- pi" in permute_eq_iff[symmetric,THEN iffD1])
    93 apply (drule_tac p1="- pi" in permute_eq_iff[symmetric,THEN iffD1])
    92 apply (simp)
    94 apply (simp)*)
    93 done
    95 done
    94 
    96 
    95 lemma alpha5_transp:
    97 lemma alpha5_transp:
    96 "(a \<approx>5 b \<longrightarrow> (\<forall>c. b \<approx>5 c \<longrightarrow> a \<approx>5 c)) \<and>
    98 "(a \<approx>5 b \<longrightarrow> (\<forall>c. b \<approx>5 c \<longrightarrow> a \<approx>5 c)) \<and>
    97 (x \<approx>l y \<longrightarrow> (\<forall>z. y \<approx>l z \<longrightarrow> x \<approx>l z)) \<and>
    99 (x \<approx>l y \<longrightarrow> (\<forall>z. y \<approx>l z \<longrightarrow> x \<approx>l z)) \<and>