Nominal/Ex/TypeSchemes.thy
changeset 2181 b997c22805ae
parent 2180 d8750d1aaed9
child 2308 387fcbd33820
equal deleted inserted replaced
2180:d8750d1aaed9 2181:b997c22805ae
   189   apply (subgoal_tac "atom a \<notin> fset_to_set (fmap atom fset)")
   189   apply (subgoal_tac "atom a \<notin> fset_to_set (fmap atom fset)")
   190   apply blast
   190   apply blast
   191   apply (metis supp_finite_atom_set finite_fset)
   191   apply (metis supp_finite_atom_set finite_fset)
   192   done
   192   done
   193 
   193 
       
   194 lemma subst_lemma_pre:
       
   195   "z \<sharp> (N,L) \<longrightarrow> z \<sharp> (subst [(y, L)] N)"
       
   196   apply (induct N rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified])
       
   197   apply (simp add: s1)
       
   198   apply (auto simp add: fresh_Pair)
       
   199   apply (auto simp add: fresh_def ty_tys.fv[simplified ty_tys.supp])[3]
       
   200   apply (simp add: s2)
       
   201   apply (auto simp add: fresh_def ty_tys.fv[simplified ty_tys.supp])
       
   202   done
       
   203 
       
   204 lemma substs_lemma_pre:
       
   205   "atom z \<sharp> (N,L) \<longrightarrow> atom z \<sharp> (substs [(y, L)] N)"
       
   206   apply (rule strong_induct[of
       
   207     "\<lambda>a t. True" "\<lambda>(z, y, L) N. (atom z \<sharp> (N, L) \<longrightarrow> atom z \<sharp> (substs [(y, L)] N))" _ _ "(z, y, L)", simplified])
       
   208   apply clarify
       
   209   apply (subst s3)
       
   210   apply (simp add: fresh_star_def fresh_Cons fresh_Nil fresh_Pair)
       
   211   apply (simp_all add: fresh_star_prod_elim fresh_Pair)
       
   212   apply clarify
       
   213   apply (drule fresh_star_atom)
       
   214   apply (drule fresh_star_atom)
       
   215   apply (simp add: fresh_def)
       
   216   apply (simp only: ty_tys.fv[simplified ty_tys.supp])
       
   217   apply (subgoal_tac "atom a \<notin> supp (subst [(aa, b)] t)")
       
   218   apply blast
       
   219   apply (subgoal_tac "atom a \<notin> supp t")
       
   220   apply (fold fresh_def)[1]
       
   221   apply (rule mp[OF subst_lemma_pre])
       
   222   apply (simp add: fresh_Pair)
       
   223   apply (subgoal_tac "atom a \<notin> (fset_to_set (fmap atom fset))")
       
   224   apply blast
       
   225   apply (metis supp_finite_atom_set finite_fset)
       
   226   done
       
   227 
       
   228 lemma subst_lemma:
       
   229   shows "x \<noteq> y \<and> atom x \<sharp> L \<longrightarrow>
       
   230     subst [(y, L)] (subst [(x, N)] M) =
       
   231     subst [(x, (subst [(y, L)] N))] (subst [(y, L)] M)"
       
   232   apply (induct M rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified])
       
   233   apply (simp_all add: s1 s2)
       
   234   apply clarify
       
   235   apply (subst (2) subst_ty)
       
   236   apply simp_all
       
   237   done
       
   238 
       
   239 lemma substs_lemma:
       
   240   shows "x \<noteq> y \<and> atom x \<sharp> L \<longrightarrow>
       
   241     substs [(y, L)] (substs [(x, N)] M) =
       
   242     substs [(x, (subst [(y, L)] N))] (substs [(y, L)] M)"
       
   243   apply (rule strong_induct[of
       
   244     "\<lambda>a t. True" "\<lambda>(x, y, N, L) M. x \<noteq> y \<and> atom x \<sharp> L \<longrightarrow>
       
   245     substs [(y, L)] (substs [(x, N)] M) =
       
   246     substs [(x, (subst [(y, L)] N))] (substs [(y, L)] M)" _ _ "(x, y, N, L)", simplified])
       
   247   apply clarify
       
   248   apply (simp_all add: fresh_star_prod_elim fresh_Pair)
       
   249   apply (subst s3)
       
   250   apply (unfold fresh_star_def)[1]
       
   251   apply (simp add: fresh_Cons fresh_Nil fresh_Pair)
       
   252   apply (subst s3)
       
   253   apply (unfold fresh_star_def)[1]
       
   254   apply (simp add: fresh_Cons fresh_Nil fresh_Pair)
       
   255   apply (subst s3)
       
   256   apply (unfold fresh_star_def)[1]
       
   257   apply (simp add: fresh_Cons fresh_Nil fresh_Pair)
       
   258   apply (subst s3)
       
   259   apply (unfold fresh_star_def)[1]
       
   260   apply (simp add: fresh_Cons fresh_Nil fresh_Pair)
       
   261   apply (rule ballI)
       
   262   apply (rule mp[OF subst_lemma_pre])
       
   263   apply (simp add: fresh_Pair)
       
   264   apply (subst subst_lemma)
       
   265   apply simp_all
       
   266   done
       
   267 
   194 end
   268 end
   195 
   269 
   196 (* PROBLEM:
   270 (* PROBLEM:
   197 Type schemes with separate datatypes
   271 Type schemes with separate datatypes
   198 
   272