Nominal/Term5.thy
changeset 1587 b6da798cef68
parent 1583 ed54632fab4a
child 1588 7cebb576fae3
equal deleted inserted replaced
1583:ed54632fab4a 1587:b6da798cef68
    70 lemma alpha5_symp:
    70 lemma alpha5_symp:
    71 "(a \<approx>5 b \<longrightarrow> b \<approx>5 a) \<and>
    71 "(a \<approx>5 b \<longrightarrow> b \<approx>5 a) \<and>
    72 (x \<approx>l y \<longrightarrow> y \<approx>l x) \<and>
    72 (x \<approx>l y \<longrightarrow> y \<approx>l x) \<and>
    73 (alpha_rbv5 x y \<longrightarrow> alpha_rbv5 y x)"
    73 (alpha_rbv5 x y \<longrightarrow> alpha_rbv5 y x)"
    74 apply (tactic {* symp_tac @{thm alpha_rtrm5_alpha_rlts_alpha_rbv5.induct} @{thms alpha5_inj} @{thms alpha5_eqvt} @{context} 1 *})
    74 apply (tactic {* symp_tac @{thm alpha_rtrm5_alpha_rlts_alpha_rbv5.induct} @{thms alpha5_inj} @{thms alpha5_eqvt} @{context} 1 *})
    75 (*
    75 done
       
    76 
       
    77 lemma alpha5_symp1:
       
    78 "(a \<approx>5 b \<longrightarrow> b \<approx>5 a) \<and>
       
    79 (x \<approx>l y \<longrightarrow> y \<approx>l x) \<and>
       
    80 (alpha_rbv5 x y \<longrightarrow> alpha_rbv5 y x)"
    76 apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct)
    81 apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct)
    77 apply (simp_all add: alpha5_inj)
    82 apply (simp_all add: alpha5_inj)
    78 apply (erule exE)
    83 apply (erule exE)
    79 apply (rule_tac x="- pi" in exI)
    84 apply (rule_tac x="- pi" in exI)
    80 apply (simp add: alpha_gen)
    85 apply (simp add: alpha_gen)
    89 apply (frule_tac p="- pi" in alpha5_eqvt(1))
    94 apply (frule_tac p="- pi" in alpha5_eqvt(1))
    90 apply simp
    95 apply simp
    91 apply (rotate_tac 6)
    96 apply (rotate_tac 6)
    92 apply simp
    97 apply simp
    93 apply (drule_tac p1="- pi" in permute_eq_iff[symmetric,THEN iffD1])
    98 apply (drule_tac p1="- pi" in permute_eq_iff[symmetric,THEN iffD1])
    94 apply (simp)*)
    99 apply (simp)
       
   100 done
       
   101 
       
   102 thm alpha_gen_sym[no_vars]
       
   103 thm alpha_gen_compose_sym[no_vars]
       
   104 
       
   105 lemma tt: 
       
   106   "\<lbrakk>R (- p \<bullet> x) y \<Longrightarrow> R (p \<bullet> y) x; (bs, x) \<approx>gen R f (- p) (cs, y)\<rbrakk> \<Longrightarrow> (cs, y) \<approx>gen R f p (bs, x)"
       
   107   unfolding alphas
       
   108   unfolding fresh_star_def
       
   109   by (auto simp add:  fresh_minus_perm)
       
   110 
       
   111 lemma alpha5_symp2:
       
   112   shows "a \<approx>5 b \<Longrightarrow> b \<approx>5 a"
       
   113   and   "x \<approx>l y \<Longrightarrow> y \<approx>l x"
       
   114   and   "alpha_rbv5 x y \<Longrightarrow> alpha_rbv5 y x"
       
   115 apply(induct rule:  alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts)
       
   116 (* non-binding case *)
       
   117 apply(simp add: alpha5_inj)
       
   118 (* non-binding case *)
       
   119 apply(simp add: alpha5_inj)
       
   120 (* binding case *)
       
   121 apply(simp add: alpha5_inj)
       
   122 apply(erule exE)
       
   123 apply(rule_tac x="- pi" in exI)
       
   124 apply(rule tt)
       
   125 apply(simp add: alphas)
       
   126 apply(erule conjE)+
       
   127 apply(drule_tac p="- pi" in alpha5_eqvt(2))
       
   128 apply(drule_tac p="- pi" in alpha5_eqvt(2))
       
   129 apply(drule_tac p="- pi" in alpha5_eqvt(1))
       
   130 apply(drule_tac p="- pi" in alpha5_eqvt(1))
       
   131 apply(simp)
       
   132 apply(simp add: alphas)
       
   133 apply(erule conjE)+
       
   134 apply metis
       
   135 (* non-binding case *)
       
   136 apply(simp add: alpha5_inj)
       
   137 (* non-binding case *)
       
   138 apply(simp add: alpha5_inj)
       
   139 (* non-binding case *)
       
   140 apply(simp add: alpha5_inj)
       
   141 (* non-binding case *)
       
   142 apply(simp add: alpha5_inj)
    95 done
   143 done
    96 
   144 
    97 lemma alpha5_transp:
   145 lemma alpha5_transp:
    98 "(a \<approx>5 b \<longrightarrow> (\<forall>c. b \<approx>5 c \<longrightarrow> a \<approx>5 c)) \<and>
   146 "(a \<approx>5 b \<longrightarrow> (\<forall>c. b \<approx>5 c \<longrightarrow> a \<approx>5 c)) \<and>
    99 (x \<approx>l y \<longrightarrow> (\<forall>z. y \<approx>l z \<longrightarrow> x \<approx>l z)) \<and>
   147 (x \<approx>l y \<longrightarrow> (\<forall>z. y \<approx>l z \<longrightarrow> x \<approx>l z)) \<and>
   112 apply (simp_all add: alpha5_inj)
   160 apply (simp_all add: alpha5_inj)
   113 apply (tactic {* (imp_elim_tac @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases} @{context}) 1 *})
   161 apply (tactic {* (imp_elim_tac @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases} @{context}) 1 *})
   114 apply (simp_all add: alpha5_inj)
   162 apply (simp_all add: alpha5_inj)
   115 apply (tactic {* eetac @{thm exi_sum} @{context} 1 *})
   163 apply (tactic {* eetac @{thm exi_sum} @{context} 1 *})
   116 (* HERE *)
   164 (* HERE *)
       
   165 (*
       
   166 apply(rule alpha_gen_trans)
       
   167 thm alpha_gen_trans
       
   168 defer
   117 apply (simp add: alpha_gen)
   169 apply (simp add: alpha_gen)
   118 apply clarify
   170 apply clarify
   119 apply(simp add: fresh_star_plus)
   171 apply(simp add: fresh_star_plus)
   120 apply (rule conjI)
   172 apply (rule conjI)
   121 apply (erule_tac x="- pi \<bullet> rltsaa" in allE)
   173 apply (erule_tac x="- pi \<bullet> rltsaa" in allE)
   130 apply simp
   182 apply simp
   131 apply (rotate_tac 3)
   183 apply (rotate_tac 3)
   132 apply (drule_tac p="pi" in alpha5_eqvt(1))
   184 apply (drule_tac p="pi" in alpha5_eqvt(1))
   133 apply simp
   185 apply simp
   134 done
   186 done
       
   187 *)
       
   188 sorry
   135 
   189 
   136 lemma alpha5_equivp:
   190 lemma alpha5_equivp:
   137   "equivp alpha_rtrm5"
   191   "equivp alpha_rtrm5"
   138   "equivp alpha_rlts"
   192   "equivp alpha_rlts"
   139   unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
   193   unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def