1 theory Tutorial6 |
|
2 imports "../Nominal/Nominal2" |
|
3 begin |
|
4 |
|
5 |
|
6 section {* Type Schemes *} |
|
7 |
|
8 text {* |
|
9 Nominal2 can deal also with more complicated binding |
|
10 structures; for example the finite set of binders found |
|
11 in type schemes. |
|
12 *} |
|
13 |
|
14 atom_decl name |
|
15 |
|
16 nominal_datatype ty = |
|
17 Var "name" |
|
18 | Fun "ty" "ty" (infixr "\<rightarrow>" 100) |
|
19 and tys = |
|
20 All as::"name fset" ty::"ty" binds (set+) as in ty ("All _. _" [100, 100] 100) |
|
21 |
|
22 |
|
23 text {* Some alpha-equivalences *} |
|
24 |
|
25 lemma |
|
26 shows "All {|a, b|}. (Var a) \<rightarrow> (Var b) = All {|b, a|}. (Var a) \<rightarrow> (Var b)" |
|
27 unfolding ty_tys.eq_iff Abs_eq_iff alphas fresh_star_def |
|
28 by (auto simp add: ty_tys.eq_iff ty_tys.supp supp_at_base fresh_star_def intro: permute_zero) |
|
29 |
|
30 lemma |
|
31 shows "All {|a, b|}. (Var a) \<rightarrow> (Var b) = All {|a, b|}. (Var b) \<rightarrow> (Var a)" |
|
32 unfolding ty_tys.eq_iff Abs_eq_iff alphas fresh_star_def |
|
33 by (auto simp add: ty_tys.eq_iff ty_tys.supp supp_at_base fresh_star_def swap_atom) |
|
34 (metis permute_flip_at) |
|
35 |
|
36 lemma |
|
37 shows "All {|a, b, c|}. (Var a) \<rightarrow> (Var b) = All {|a, b|}. (Var a) \<rightarrow> (Var b)" |
|
38 unfolding ty_tys.eq_iff Abs_eq_iff alphas fresh_star_def |
|
39 by (auto simp add: ty_tys.eq_iff ty_tys.supp supp_at_base fresh_star_def intro: permute_zero) |
|
40 |
|
41 lemma |
|
42 assumes a: "a \<noteq> b" |
|
43 shows "All {|a, b|}. (Var a) \<rightarrow> (Var b) \<noteq> All {|c|}. (Var c) \<rightarrow> (Var c)" |
|
44 using a |
|
45 unfolding ty_tys.eq_iff Abs_eq_iff alphas fresh_star_def |
|
46 by (auto simp add: ty_tys.eq_iff ty_tys.supp supp_at_base fresh_star_def) |
|
47 |
|
48 |
|
49 end |
|