1 |
|
2 theory Tutorial2 |
|
3 imports Lambda |
|
4 begin |
|
5 |
|
6 section {* Height of a Lambda-Term *} |
|
7 |
|
8 text {* |
|
9 The theory Lambda defines the notions of capture-avoiding |
|
10 substitution and the height of lambda terms. |
|
11 *} |
|
12 |
|
13 thm height.simps |
|
14 thm subst.simps |
|
15 |
|
16 subsection {* EXERCISE 7 *} |
|
17 |
|
18 text {* |
|
19 Lets prove a property about the height of substitutions. |
|
20 |
|
21 Assume that the height of a lambda-term is always greater |
|
22 or equal to 1. |
|
23 *} |
|
24 |
|
25 lemma height_ge_one: |
|
26 shows "1 \<le> height t" |
|
27 by (induct t rule: lam.induct) (auto) |
|
28 |
|
29 text {* Remove the sorries *} |
|
30 |
|
31 theorem height_subst: |
|
32 shows "height (t[x ::= t']) \<le> height t - 1 + height t'" |
|
33 proof (induct t rule: lam.induct) |
|
34 case (Var y) |
|
35 show "height (Var y[x ::= t']) \<le> height (Var y) - 1 + height t'" sorry |
|
36 next |
|
37 case (App t1 t2) |
|
38 have ih1: "height (t1[x::=t']) \<le> (height t1) - 1 + height t'" by fact |
|
39 have ih2: "height (t2[x::=t']) \<le> (height t2) - 1 + height t'" by fact |
|
40 |
|
41 show "height ((App t1 t2)[x ::= t']) \<le> height (App t1 t2) - 1 + height t'" sorry |
|
42 next |
|
43 case (Lam y t1) |
|
44 have ih: "height (t1[x::=t']) \<le> height t1 - 1 + height t'" by fact |
|
45 -- {* the definition of capture-avoiding substitution *} |
|
46 thm subst.simps |
|
47 |
|
48 show "height ((Lam [y].t1)[x ::= t']) \<le> height (Lam [y].t1) - 1 + height t'" sorry |
|
49 qed |
|
50 |
|
51 |
|
52 text {* |
|
53 The point is that substitutions can only be moved under a binder |
|
54 provided certain freshness conditions are satisfied. The structural |
|
55 induction above does not say anything about such freshness conditions. |
|
56 |
|
57 Fortunately, Nominal derives automatically some stronger induction |
|
58 principle for lambda terms which has the usual variable convention |
|
59 build in. |
|
60 |
|
61 In the proof below, we use this stronger induction principle. The |
|
62 variable and application case are as before. |
|
63 *} |
|
64 |
|
65 |
|
66 theorem |
|
67 shows "height (t[x ::= t']) \<le> height t - 1 + height t'" |
|
68 proof (nominal_induct t avoiding: x t' rule: lam.strong_induct) |
|
69 case (Var y) |
|
70 have "1 \<le> height t'" using height_ge_one by simp |
|
71 then show "height (Var y[x ::= t']) \<le> height (Var y) - 1 + height t'" by simp |
|
72 next |
|
73 case (App t1 t2) |
|
74 have ih1: "height (t1[x::=t']) \<le> (height t1) - 1 + height t'" |
|
75 and ih2: "height (t2[x::=t']) \<le> (height t2) - 1 + height t'" by fact+ |
|
76 then show "height ((App t1 t2)[x ::= t']) \<le> height (App t1 t2) - 1 + height t'" by simp |
|
77 next |
|
78 case (Lam y t1) |
|
79 have ih: "height (t1[x::=t']) \<le> height t1 - 1 + height t'" by fact |
|
80 have vc: "atom y \<sharp> x" "atom y \<sharp> t'" by fact+ -- {* usual variable convention *} |
|
81 |
|
82 show "height ((Lam [y].t1)[x ::= t']) \<le> height (Lam [y].t1) - 1 + height t'" sorry |
|
83 qed |
|
84 |
|
85 |
|
86 section {* Types and the Weakening Lemma *} |
|
87 |
|
88 nominal_datatype ty = |
|
89 tVar "string" |
|
90 | tArr "ty" "ty" (infixr "\<rightarrow>" 100) |
|
91 |
|
92 |
|
93 text {* |
|
94 Having defined them as nominal datatypes gives us additional |
|
95 definitions and theorems that come with types (see below). |
|
96 |
|
97 We next define the type of typing contexts, a predicate that |
|
98 defines valid contexts (i.e. lists that contain only unique |
|
99 variables) and the typing judgement. |
|
100 *} |
|
101 |
|
102 type_synonym ty_ctx = "(name \<times> ty) list" |
|
103 |
|
104 inductive |
|
105 valid :: "ty_ctx \<Rightarrow> bool" |
|
106 where |
|
107 v1[intro]: "valid []" |
|
108 | v2[intro]: "\<lbrakk>valid \<Gamma>; atom x \<sharp> \<Gamma>\<rbrakk>\<Longrightarrow> valid ((x, T) # \<Gamma>)" |
|
109 |
|
110 |
|
111 inductive |
|
112 typing :: "ty_ctx \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60, 60, 60] 60) |
|
113 where |
|
114 t_Var[intro]: "\<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T" |
|
115 | t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2; \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2" |
|
116 | t_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam [x].t : T1 \<rightarrow> T2" |
|
117 |
|
118 |
|
119 text {* |
|
120 The predicate atom x \<sharp> \<Gamma>, read as x fresh for \<Gamma>, is defined by |
|
121 Nominal Isabelle. It is defined for lambda-terms, products, lists etc. |
|
122 For example we have: |
|
123 *} |
|
124 |
|
125 lemma |
|
126 fixes x::"name" |
|
127 shows "atom x \<sharp> Lam [x].t" |
|
128 and "atom x \<sharp> (t1, t2) \<Longrightarrow> atom x \<sharp> App t1 t2" |
|
129 and "atom x \<sharp> Var y \<Longrightarrow> atom x \<sharp> y" |
|
130 and "\<lbrakk>atom x \<sharp> t1; atom x \<sharp> t2\<rbrakk> \<Longrightarrow> atom x \<sharp> (t1, t2)" |
|
131 and "\<lbrakk>atom x \<sharp> l1; atom x \<sharp> l2\<rbrakk> \<Longrightarrow> atom x \<sharp> (l1 @ l2)" |
|
132 and "atom x \<sharp> y \<Longrightarrow> x \<noteq> y" |
|
133 by (simp_all add: lam.fresh fresh_append fresh_at_base) |
|
134 |
|
135 text {* |
|
136 We can also prove that every variable is fresh for a type. |
|
137 *} |
|
138 |
|
139 lemma ty_fresh: |
|
140 fixes x::"name" |
|
141 and T::"ty" |
|
142 shows "atom x \<sharp> T" |
|
143 by (induct T rule: ty.induct) |
|
144 (simp_all add: ty.fresh pure_fresh) |
|
145 |
|
146 text {* |
|
147 In order to state the weakening lemma in a convenient form, we |
|
148 using the following abbreviation. Abbreviations behave like |
|
149 definitions, except that they are always automatically folded |
|
150 and unfolded. |
|
151 *} |
|
152 |
|
153 abbreviation |
|
154 "sub_ty_ctx" :: "ty_ctx \<Rightarrow> ty_ctx \<Rightarrow> bool" ("_ \<sqsubseteq> _" [60, 60] 60) |
|
155 where |
|
156 "\<Gamma>1 \<sqsubseteq> \<Gamma>2 \<equiv> \<forall>x. x \<in> set \<Gamma>1 \<longrightarrow> x \<in> set \<Gamma>2" |
|
157 |
|
158 |
|
159 subsection {* EXERCISE 8 *} |
|
160 |
|
161 text {* |
|
162 Fill in the details and give a proof of the weakening lemma. |
|
163 *} |
|
164 |
|
165 lemma |
|
166 assumes a: "\<Gamma>1 \<turnstile> t : T" |
|
167 and b: "valid \<Gamma>2" |
|
168 and c: "\<Gamma>1 \<sqsubseteq> \<Gamma>2" |
|
169 shows "\<Gamma>2 \<turnstile> t : T" |
|
170 using a b c |
|
171 proof (induct arbitrary: \<Gamma>2) |
|
172 case (t_Var \<Gamma>1 x T) |
|
173 have a1: "valid \<Gamma>1" by fact |
|
174 have a2: "(x, T) \<in> set \<Gamma>1" by fact |
|
175 have a3: "valid \<Gamma>2" by fact |
|
176 have a4: "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact |
|
177 |
|
178 show "\<Gamma>2 \<turnstile> Var x : T" sorry |
|
179 next |
|
180 case (t_Lam x \<Gamma>1 T1 t T2) |
|
181 have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; (x, T1) # \<Gamma>1 \<sqsubseteq> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t : T2" by fact |
|
182 have a0: "atom x \<sharp> \<Gamma>1" by fact |
|
183 have a1: "valid \<Gamma>2" by fact |
|
184 have a2: "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact |
|
185 |
|
186 show "\<Gamma>2 \<turnstile> Lam [x].t : T1 \<rightarrow> T2" sorry |
|
187 qed (auto) -- {* the application case is automatic*} |
|
188 |
|
189 |
|
190 text {* |
|
191 Despite the frequent claim that the weakening lemma is trivial, |
|
192 routine or obvious, the proof in the lambda-case does not go |
|
193 through smoothly. Painful variable renamings seem to be necessary. |
|
194 But the proof using renamings is horribly complicated (see below). |
|
195 *} |
|
196 |
|
197 equivariance valid |
|
198 equivariance typing |
|
199 |
|
200 lemma weakening_NOT_TO_BE_TRIED_AT_HOME: |
|
201 assumes a: "\<Gamma>1 \<turnstile> t : T" |
|
202 and b: "valid \<Gamma>2" |
|
203 and c: "\<Gamma>1 \<sqsubseteq> \<Gamma>2" |
|
204 shows "\<Gamma>2 \<turnstile> t : T" |
|
205 using a b c |
|
206 proof (induct arbitrary: \<Gamma>2) |
|
207 -- {* lambda case *} |
|
208 case (t_Lam x \<Gamma>1 T1 t T2) |
|
209 have fc0: "atom x \<sharp> \<Gamma>1" by fact |
|
210 have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; (x, T1) # \<Gamma>1 \<sqsubseteq> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t : T2" by fact |
|
211 -- {* we choose a fresh variable *} |
|
212 obtain c::"name" where fc1: "atom c \<sharp> (x, t, \<Gamma>1, \<Gamma>2)" by (rule obtain_fresh) |
|
213 -- {* we alpha-rename the abstraction *} |
|
214 have "Lam [c].((c \<leftrightarrow> x) \<bullet> t) = Lam [x].t" using fc1 |
|
215 by (auto simp add: lam.eq_iff Abs1_eq_iff flip_def) |
|
216 moreover |
|
217 -- {* we can then alpha rename the goal *} |
|
218 have "\<Gamma>2 \<turnstile> Lam [c].((c \<leftrightarrow> x) \<bullet> t) : T1 \<rightarrow> T2" |
|
219 proof - |
|
220 -- {* we need to establish *} |
|
221 -- {* (1) (x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2) *} |
|
222 -- {* (2) valid ((x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2)) *} |
|
223 have "(1)": "(x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2)" |
|
224 proof - |
|
225 have "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact |
|
226 then have "(c \<leftrightarrow> x) \<bullet> ((x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2))" using fc0 fc1 |
|
227 by (perm_simp) (simp add: flip_fresh_fresh) |
|
228 then show "(x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2)" by (rule permute_boolE) |
|
229 qed |
|
230 moreover |
|
231 have "(2)": "valid ((x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2))" |
|
232 proof - |
|
233 have "valid \<Gamma>2" by fact |
|
234 then show "valid ((x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2))" using fc1 |
|
235 by (auto simp add: fresh_permute_left atom_eqvt valid.eqvt) |
|
236 qed |
|
237 -- {* these two facts give us by induction hypothesis the following *} |
|
238 ultimately have "(x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2) \<turnstile> t : T2" using ih by simp |
|
239 -- {* we now apply renamings to get to our goal *} |
|
240 then have "(c \<leftrightarrow> x) \<bullet> ((x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2) \<turnstile> t : T2)" by (rule permute_boolI) |
|
241 then have "(c, T1) # \<Gamma>2 \<turnstile> ((c \<leftrightarrow> x) \<bullet> t) : T2" using fc1 |
|
242 by (perm_simp) (simp add: flip_fresh_fresh ty_fresh) |
|
243 then show "\<Gamma>2 \<turnstile> Lam [c].((c \<leftrightarrow> x) \<bullet> t) : T1 \<rightarrow> T2" using fc1 by auto |
|
244 qed |
|
245 ultimately show "\<Gamma>2 \<turnstile> Lam [x].t : T1 \<rightarrow> T2" by (simp only:) |
|
246 qed (auto) -- {* var and app cases, luckily, are automatic *} |
|
247 |
|
248 |
|
249 text {* |
|
250 The remedy is to use again a stronger induction principle that |
|
251 has the usual "variable convention" already build in. The |
|
252 following command derives this induction principle for the typing |
|
253 relation. (We shall explain what happens here later.) |
|
254 *} |
|
255 |
|
256 nominal_inductive typing |
|
257 avoids t_Lam: "x" |
|
258 unfolding fresh_star_def |
|
259 by (simp_all add: fresh_Pair lam.fresh ty_fresh) |
|
260 |
|
261 text {* Compare the two induction principles *} |
|
262 |
|
263 thm typing.induct |
|
264 thm typing.strong_induct -- {* note the additional assumption {atom x} \<sharp> c *} |
|
265 |
|
266 text {* |
|
267 We can use the stronger induction principle by replacing |
|
268 the line |
|
269 |
|
270 proof (induct arbitrary: \<Gamma>2) |
|
271 |
|
272 with |
|
273 |
|
274 proof (nominal_induct avoiding: \<Gamma>2 rule: typing.strong_induct) |
|
275 |
|
276 Try now the proof. |
|
277 *} |
|
278 |
|
279 subsection {* EXERCISE 9 *} |
|
280 |
|
281 lemma weakening: |
|
282 assumes a: "\<Gamma>1 \<turnstile> t : T" |
|
283 and b: "valid \<Gamma>2" |
|
284 and c: "\<Gamma>1 \<sqsubseteq> \<Gamma>2" |
|
285 shows "\<Gamma>2 \<turnstile> t : T" |
|
286 using a b c |
|
287 proof (nominal_induct avoiding: \<Gamma>2 rule: typing.strong_induct) |
|
288 case (t_Var \<Gamma>1 x T) -- {* again the variable case is as before *} |
|
289 have "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact |
|
290 moreover |
|
291 have "valid \<Gamma>2" by fact |
|
292 moreover |
|
293 have "(x, T)\<in> set \<Gamma>1" by fact |
|
294 ultimately show "\<Gamma>2 \<turnstile> Var x : T" by auto |
|
295 next |
|
296 case (t_Lam x \<Gamma>1 T1 t T2) |
|
297 have vc: "atom x \<sharp> \<Gamma>2" by fact -- {* additional fact afforded by the strong induction *} |
|
298 have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; (x, T1) # \<Gamma>1 \<sqsubseteq> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t : T2" by fact |
|
299 have a0: "atom x \<sharp> \<Gamma>1" by fact |
|
300 have a1: "valid \<Gamma>2" by fact |
|
301 have a2: "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact |
|
302 |
|
303 show "\<Gamma>2 \<turnstile> Lam [x].t : T1 \<rightarrow> T2" sorry |
|
304 qed (auto) -- {* app case *} |
|
305 |
|
306 |
|
307 |
|
308 section {* Unbind and an Inconsistency Example *} |
|
309 |
|
310 text {* |
|
311 You might wonder why we had to discharge some proof |
|
312 obligations in order to obtain the stronger induction |
|
313 principle for the typing relation. (Remember for |
|
314 lambda terms this stronger induction principle is |
|
315 derived automatically.) |
|
316 |
|
317 This proof obligation is really needed, because if we |
|
318 assume universally a stronger induction principle, then |
|
319 in some cases we can derive false. This is "shown" below. |
|
320 *} |
|
321 |
|
322 |
|
323 inductive |
|
324 unbind :: "lam \<Rightarrow> lam \<Rightarrow> bool" (infixr "\<mapsto>" 60) |
|
325 where |
|
326 u_Var[intro]: "Var x \<mapsto> Var x" |
|
327 | u_App[intro]: "App t1 t2 \<mapsto> App t1 t2" |
|
328 | u_Lam[intro]: "t \<mapsto> t' \<Longrightarrow> Lam [x].t \<mapsto> t'" |
|
329 |
|
330 text {* It is clear that the following judgement holds. *} |
|
331 |
|
332 lemma unbind_simple: |
|
333 shows "Lam [x].Var x \<mapsto> Var x" |
|
334 by auto |
|
335 |
|
336 text {* |
|
337 Now lets derive the strong induction principle for unbind. |
|
338 The point is that we cannot establish the proof obligations, |
|
339 therefore we force Isabelle to accept them by using "sorry". |
|
340 *} |
|
341 |
|
342 equivariance unbind |
|
343 nominal_inductive unbind |
|
344 avoids u_Lam: "x" |
|
345 sorry |
|
346 |
|
347 text {* |
|
348 Using the stronger induction principle, we can establish |
|
349 th follwoing bogus property. |
|
350 *} |
|
351 |
|
352 lemma unbind_fake: |
|
353 fixes y::"name" |
|
354 assumes a: "t \<mapsto> t'" |
|
355 and b: "atom y \<sharp> t" |
|
356 shows "atom y \<sharp> t'" |
|
357 using a b |
|
358 proof (nominal_induct avoiding: y rule: unbind.strong_induct) |
|
359 case (u_Lam t t' x y) |
|
360 have ih: "atom y \<sharp> t \<Longrightarrow> atom y \<sharp> t'" by fact |
|
361 have asm: "atom y \<sharp> Lam [x]. t" by fact |
|
362 have fc: "atom x \<sharp> y" by fact |
|
363 then have in_eq: "x \<noteq> y" by (simp add: fresh_at_base) |
|
364 then have "atom y \<sharp> t" using asm by (simp add: lam.fresh) |
|
365 then show "atom y \<sharp> t'" using ih by simp |
|
366 qed |
|
367 |
|
368 text {* |
|
369 And from this follows the inconsitency: |
|
370 *} |
|
371 |
|
372 lemma |
|
373 shows "False" |
|
374 proof - |
|
375 have "atom x \<sharp> Lam [x]. Var x" by (simp add: lam.fresh) |
|
376 moreover |
|
377 have "Lam [x]. Var x \<mapsto> Var x" using unbind_simple by auto |
|
378 ultimately |
|
379 have "atom x \<sharp> Var x" using unbind_fake by auto |
|
380 then have "x \<noteq> x" by (simp add: lam.fresh fresh_at_base) |
|
381 then show "False" by simp |
|
382 qed |
|
383 |
|
384 end |
|