Slides/Slides9.thy
branchNominal2-Isabelle2012
changeset 3169 b6873d123f9b
parent 3168 a6f3e1b08494
child 3170 89715c48f728
equal deleted inserted replaced
3168:a6f3e1b08494 3169:b6873d123f9b
     1 (*<*)
       
     2 theory Slides9
       
     3 imports "~~/src/HOL/Library/LaTeXsugar" "Nominal"
       
     4 begin
       
     5 
       
     6 notation (latex output)
       
     7   set ("_") and
       
     8   Cons  ("_::/_" [66,65] 65) 
       
     9 
       
    10 (*>*)
       
    11 
       
    12 
       
    13 text_raw {*
       
    14   %% shallow, deep, and recursive binders
       
    15   %%
       
    16   %%\renewcommand{\slidecaption}{Cambridge, 8.~June 2010}
       
    17   %%\renewcommand{\slidecaption}{Uppsala, 3.~March 2011}
       
    18   \renewcommand{\slidecaption}{Leicester, 23.~November 2011}
       
    19   \newcommand{\soutt}[1]{\tikz[baseline=(X.base), inner sep=-0.1pt, outer sep=0pt]
       
    20   \node [cross out,red, ultra thick, draw] (X) {\textcolor{black}{#1}};}
       
    21   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    22   \mode<presentation>{
       
    23   \begin{frame}<1>[t]
       
    24   \frametitle{%
       
    25   \begin{tabular}{@ {\hspace{-3mm}}c@ {}}
       
    26   \\
       
    27   \LARGE General Binding Structures\\[-1mm] 
       
    28   \LARGE in Nominal Isabelle 2\\
       
    29   \end{tabular}}
       
    30   \begin{center}
       
    31   Christian Urban
       
    32   \end{center}
       
    33   \begin{center}
       
    34   joint work with {\bf Cezary Kaliszyk}\\[0mm] 
       
    35   \end{center}
       
    36   \end{frame}}
       
    37   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
    38 
       
    39 *}
       
    40 
       
    41 text_raw {*
       
    42   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    43   \mode<presentation>{
       
    44   \begin{frame}<1>
       
    45   \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}}
       
    46   \mbox{}\\[-6mm]
       
    47 
       
    48   \begin{itemize}
       
    49   \item the old Nominal Isabelle provided a reasoning infrastructure for single binders\medskip
       
    50   
       
    51   \begin{center}
       
    52   Lam [a].(Var a)
       
    53   \end{center}\bigskip
       
    54 
       
    55   \item<2-> but representing 
       
    56 
       
    57   \begin{center}
       
    58   $\forall\{a_1,\ldots,a_n\}.\; T$ 
       
    59   \end{center}\medskip
       
    60 
       
    61   with single binders and reasoning about it is a \alert{\bf major} pain; 
       
    62   take my word for it!
       
    63   \end{itemize}
       
    64 
       
    65   \only<1>{
       
    66   \begin{textblock}{6}(1.5,11)
       
    67   \small
       
    68   for example\\
       
    69   \begin{tabular}{l@ {\hspace{2mm}}l}
       
    70    & a $\fresh$ Lam [a]. t\\
       
    71    & Lam [a]. (Var a) \alert{$=$} Lam [b]. (Var b)\\
       
    72    & Barendregt-style reasoning about bound variables\\
       
    73    & (variable convention can lead to faulty reasoning)
       
    74   \end{tabular}
       
    75   \end{textblock}}
       
    76   
       
    77   \end{frame}}
       
    78   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
    79 *}
       
    80 
       
    81 text_raw {*
       
    82   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    83   \mode<presentation>{
       
    84   \begin{frame}[c]
       
    85   \frametitle{}
       
    86 
       
    87   \begin{tabular}{c@ {\hspace{2mm}}c}
       
    88   \\[6mm]
       
    89   \begin{tabular}{c}
       
    90   \includegraphics[scale=0.11]{harper.jpg}\\[-2mm]
       
    91   {\footnotesize Bob Harper}\\[-2.5mm]
       
    92   {\footnotesize (CMU)}
       
    93   \end{tabular}
       
    94   \begin{tabular}{c}
       
    95   \includegraphics[scale=0.37]{pfenning.jpg}\\[-2mm]
       
    96   {\footnotesize Frank Pfenning}\\[-2.5mm]
       
    97   {\footnotesize (CMU)}
       
    98   \end{tabular} &
       
    99 
       
   100   \begin{tabular}{p{6cm}}
       
   101   \raggedright
       
   102   \color{gray}{published a proof in\\ {\bf ACM Transactions on Computational Logic}, 2005,
       
   103   $\sim$31pp}
       
   104   \end{tabular}\\
       
   105 
       
   106   \pause
       
   107   \\[0mm]
       
   108   
       
   109   \begin{tabular}{c}
       
   110   \includegraphics[scale=0.36]{appel.jpg}\\[-2mm] 
       
   111   {\footnotesize Andrew Appel}\\[-2.5mm]
       
   112   {\footnotesize (Princeton)}
       
   113   \end{tabular} &
       
   114 
       
   115   \begin{tabular}{p{6cm}}
       
   116   \raggedright
       
   117   \color{gray}{relied on their proof in a\\ {\bf security} critical application}
       
   118   \end{tabular}
       
   119   \end{tabular}\medskip\pause
       
   120 
       
   121   \small
       
   122   \begin{minipage}{1.0\textwidth}
       
   123   (I also found an {\bf error} in my Ph.D.-thesis about cut-elimination
       
   124   examined by Henk Barendregt and Andy Pitts.)
       
   125   \end{minipage}
       
   126 
       
   127   \end{frame}}
       
   128   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   129 *}
       
   130 
       
   131 text_raw {*
       
   132   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   133   \mode<presentation>{
       
   134   \begin{frame}[c]
       
   135   \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}}
       
   136 
       
   137   \begin{itemize}
       
   138   \item<1-> but representing 
       
   139 
       
   140   \begin{center}
       
   141   $\forall\{a_1,\ldots,a_n\}.\; T$ 
       
   142   \end{center}\medskip
       
   143 
       
   144   with single binders and reasoning about it was a \alert{\bf major} pain; 
       
   145   take my word for it!
       
   146   \end{itemize}
       
   147 
       
   148   
       
   149   \end{frame}}
       
   150   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   151 *}
       
   152 
       
   153 text_raw {*
       
   154   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   155   \mode<presentation>{
       
   156   \begin{frame}<1-6>
       
   157   \frametitle{New Types in HOL}
       
   158 
       
   159    \begin{center}
       
   160   \begin{tikzpicture}[scale=1.5]
       
   161   %%%\draw[step=2mm] (-4,-1) grid (4,1);
       
   162   
       
   163   \onslide<2-4,6>{\draw[very thick] (0.7,0.4) circle (4.25mm);}
       
   164   \onslide<1-4,6>{\draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);}
       
   165   \onslide<3-5,6>{\draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);}
       
   166   
       
   167   \onslide<3-4,6>{\draw (-2.0, 0.845) --  (0.7,0.845);}
       
   168   \onslide<3-4,6>{\draw (-2.0,-0.045)  -- (0.7,-0.045);}
       
   169 
       
   170   \onslide<4-4,6>{\alert{\draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]classes\end{tabular}};}}
       
   171   \onslide<4-5,6>{\alert{\draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};}}
       
   172   \onslide<1-4,6>{\draw (1.8, 0.48) node[right=-0.1mm]
       
   173     {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ \onslide<4-4,6>{\alert{(sets of raw terms)}}\end{tabular}};}
       
   174   \onslide<2-4,6>{\draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};}
       
   175   \onslide<3-5,6>{\draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};}
       
   176   
       
   177   \onslide<3-4,6>{\draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);}
       
   178   \onslide<3-4,6>{\draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};}
       
   179 
       
   180   \onslide<6>{\draw[->, line width=2mm, red] (-1.0,-0.4) -- (0.35,0.16);}
       
   181   \end{tikzpicture}
       
   182   \end{center}
       
   183   
       
   184   \begin{center}
       
   185   \textcolor{red}{\large\bf\onslide<6>{define $\alpha$-equivalence}}
       
   186   \end{center}
       
   187 
       
   188   \end{frame}}
       
   189   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   190 *}
       
   191 
       
   192 
       
   193 
       
   194 text_raw {*
       
   195   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   196   \mode<presentation>{
       
   197   \begin{frame}<1-4>
       
   198   \frametitle{\begin{tabular}{c}Binding Sets of Names\end{tabular}}
       
   199   \mbox{}\\[-3mm]
       
   200 
       
   201   \begin{itemize}
       
   202   \item binding sets of names has some interesting properties:\medskip
       
   203   
       
   204   \begin{center}
       
   205   \begin{tabular}{l}
       
   206   \textcolor{blue}{$\forall\{x, y\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{y, x\}.\, y \rightarrow x$}
       
   207   \bigskip\smallskip\\
       
   208 
       
   209   \onslide<2->{%
       
   210   \textcolor{blue}{$\forall\{x, y\}.\, x \rightarrow y \;\;\not\approx_\alpha\;\; \forall\{z\}.\, z \rightarrow z$}
       
   211   }\bigskip\smallskip\\
       
   212 
       
   213   \onslide<3->{%
       
   214   \textcolor{blue}{$\forall\{x\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{x, \alert{z}\}.\, x \rightarrow y$}
       
   215   }\medskip\\
       
   216   \onslide<3->{\hspace{4cm}\small provided $z$ is fresh for the type}
       
   217   \end{tabular}
       
   218   \end{center}
       
   219   \end{itemize}
       
   220   
       
   221   \begin{textblock}{8}(2,14.5)
       
   222   \footnotesize $^*$ $x$, $y$, $z$ are assumed to be distinct
       
   223   \end{textblock}
       
   224 
       
   225   \only<4>{
       
   226   \begin{textblock}{6}(2.5,4)
       
   227   \begin{tikzpicture}
       
   228   \draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
       
   229   {\normalsize\color{darkgray}
       
   230   \begin{minipage}{8cm}\raggedright
       
   231   For type-schemes the order of bound names does not matter, and
       
   232   $\alpha$-equivalence is preserved under \alert{vacuous} binders.
       
   233   \end{minipage}};
       
   234   \end{tikzpicture}
       
   235   \end{textblock}}
       
   236   \end{frame}}
       
   237   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   238 *}
       
   239 
       
   240 text_raw {*
       
   241   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   242   \mode<presentation>{
       
   243   \begin{frame}<1-3>
       
   244   \frametitle{\begin{tabular}{c}Other Binding Modes\end{tabular}}
       
   245   \mbox{}\\[-3mm]
       
   246 
       
   247   \begin{itemize}
       
   248   \item alpha-equivalence being preserved under vacuous binders is \underline{not} always
       
   249   wanted:\bigskip\bigskip\normalsize
       
   250   
       
   251   \textcolor{blue}{\begin{tabular}{@ {\hspace{-8mm}}l}
       
   252   $\text{let}\;x = 3\;\text{and}\;y = 2\;\text{in}\;x - y\;\text{end}$\medskip\\
       
   253   \onslide<2->{$\;\;\;\only<2>{\approx_\alpha}\only<3>{\alert{\not\approx_\alpha}}
       
   254    \text{let}\;y = 2\;\text{and}\;x = 3\only<3->{\alert{\;\text{and}
       
   255     \;z = \text{loop}}}\;\text{in}\;x - y\;\text{end}$}
       
   256   \end{tabular}}
       
   257   
       
   258 
       
   259   \end{itemize}
       
   260 
       
   261   \end{frame}}
       
   262   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   263 *}
       
   264 
       
   265 text_raw {*
       
   266   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   267   \mode<presentation>{
       
   268   \begin{frame}<1>
       
   269   \frametitle{\begin{tabular}{c}\LARGE{}Even Another Binding Mode\end{tabular}}
       
   270   \mbox{}\\[-3mm]
       
   271 
       
   272   \begin{itemize}
       
   273   \item sometimes one wants to abstract more than one name, but the order \underline{does} matter\bigskip
       
   274   
       
   275   \begin{center}
       
   276   \textcolor{blue}{\begin{tabular}{@ {\hspace{-8mm}}l}
       
   277   $\text{let}\;(x, y) = (3, 2)\;\text{in}\;x - y\;\text{end}$\medskip\\
       
   278   $\;\;\;\not\approx_\alpha
       
   279    \text{let}\;(y, x) = (3, 2)\;\text{in}\;x - y\;\text{end}$
       
   280   \end{tabular}}
       
   281   \end{center}
       
   282   
       
   283 
       
   284   \end{itemize}
       
   285 
       
   286   \end{frame}}
       
   287   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   288 *}
       
   289 
       
   290 text_raw {*
       
   291   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   292   \mode<presentation>{
       
   293   \begin{frame}<1-2>
       
   294   \frametitle{\begin{tabular}{c}\LARGE{}Three Binding Modes\end{tabular}}
       
   295   \mbox{}\\[-3mm]
       
   296 
       
   297   \begin{itemize}
       
   298   \item the order does not matter and alpha-equivelence is preserved under
       
   299   vacuous binders \textcolor{gray}{(restriction)}\medskip
       
   300   
       
   301   \item the order does not matter, but the cardinality of the binders 
       
   302   must be the same \textcolor{gray}{(abstraction)}\medskip
       
   303 
       
   304   \item the order does matter \textcolor{gray}{(iterated single binders)}
       
   305   \end{itemize}
       
   306 
       
   307   \onslide<2->{
       
   308   \begin{center}
       
   309   \isacommand{bind (set+)}\hspace{6mm}
       
   310   \isacommand{bind (set)}\hspace{6mm}
       
   311   \isacommand{bind}
       
   312   \end{center}}
       
   313 
       
   314   \end{frame}}
       
   315   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   316 *}
       
   317 
       
   318 text_raw {*
       
   319   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   320   \mode<presentation>{
       
   321   \begin{frame}<1-3>
       
   322   \frametitle{\begin{tabular}{c}Specification of Binding\end{tabular}}
       
   323   \mbox{}\\[-6mm]
       
   324 
       
   325   \mbox{}\hspace{10mm}
       
   326   \begin{tabular}{ll}
       
   327   \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\
       
   328   \hspace{5mm}\phantom{$|$} Var name\\
       
   329   \hspace{5mm}$|$ App trm trm\\
       
   330   \hspace{5mm}$|$ Lam \only<2->{x::}name \only<2->{t::}trm
       
   331   & \onslide<2->{\isacommand{bind} x \isacommand{in} t}\\
       
   332   \hspace{5mm}$|$ Let \only<2->{as::}assns \only<2->{t::}trm
       
   333   & \onslide<2->{\isacommand{bind} bn(as) \isacommand{in} t}\\
       
   334   \multicolumn{2}{l}{\isacommand{and} assns $=$}\\
       
   335   \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
       
   336   \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assns}\\
       
   337   \multicolumn{2}{l}{\onslide<3->{\isacommand{binder} bn \isacommand{where}}}\\
       
   338   \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ []}}\\
       
   339   \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}$|$ bn(ACons a t as) $=$ [a] @ bn(as)}}\\
       
   340   \end{tabular}
       
   341 
       
   342 
       
   343 
       
   344   \end{frame}}
       
   345   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   346 *}
       
   347 
       
   348 
       
   349 text_raw {*
       
   350   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   351   \mode<presentation>{
       
   352   \begin{frame}<1-2,4-8>
       
   353   \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}}
       
   354   \mbox{}\\[-3mm]
       
   355 
       
   356   \begin{itemize}
       
   357   \item lets first look at pairs\bigskip\medskip
       
   358 
       
   359   \textcolor{blue}{\begin{tabular}{@ {\hspace{1cm}}l}
       
   360   $(as, x) \onslide<2->{\approx\!}\makebox[5mm][l]{\only<2-6>{${}_{\text{set}}$}%
       
   361            \only<7>{${}_{\text{\alert{list}}}$}%
       
   362            \only<8>{${}_{\text{\alert{set+}}}$}}%
       
   363            \,\onslide<2->{(bs,y)}$
       
   364   \end{tabular}}\bigskip
       
   365   \end{itemize}
       
   366 
       
   367   \only<1>{
       
   368   \begin{textblock}{8}(3,8.5)
       
   369   \begin{tabular}{l@ {\hspace{2mm}}p{8cm}}
       
   370    & \textcolor{blue}{$as$} is a set of names\ldots the binders\\
       
   371    & \textcolor{blue}{$x$} is the body (might be a tuple)\\
       
   372    & \textcolor{blue}{$\approx_{\text{set}}$} is where the cardinality 
       
   373   of the binders has to be the same\\
       
   374   \end{tabular}
       
   375   \end{textblock}}
       
   376 
       
   377   \only<4->{
       
   378   \begin{textblock}{12}(5,8)
       
   379   \textcolor{blue}{
       
   380   \begin{tabular}{ll@ {\hspace{1mm}}l}
       
   381   $\dn$ & \onslide<5->{$\exists \pi.\,$} & $\text{fv}(x) - as = \text{fv}(y) - bs$\\[1mm]
       
   382         & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$\text{fv}(x) - as \fresh^* \pi$}\\[1mm]
       
   383         & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$(\pi \act x) = y$}\\[1mm]
       
   384         & \only<6-7>{$\;\;\;\wedge$}\only<8>{\textcolor{gray}{\xout{$\;\;\;\wedge$}}} & 
       
   385           \only<6-7>{$\pi \act as = bs$}\only<8>{\textcolor{gray}{\xout{$\pi \act as = bs$}}}\\
       
   386   \end{tabular}}
       
   387   \end{textblock}}
       
   388   
       
   389   \only<7>{
       
   390   \begin{textblock}{7}(3,13.8)
       
   391   \footnotesize $^*$ $as$ and $bs$ are \alert{lists} of names 
       
   392   \end{textblock}}
       
   393   \end{frame}}
       
   394   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   395 *}
       
   396 
       
   397 text_raw {*
       
   398   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   399   \mode<presentation>{
       
   400   \begin{frame}<1-3>
       
   401   \frametitle{\begin{tabular}{c}Examples\end{tabular}}
       
   402   \mbox{}\\[-3mm]
       
   403 
       
   404   \begin{itemize}
       
   405   \item lets look at type-schemes:\medskip\medskip
       
   406 
       
   407   \begin{center}
       
   408   \textcolor{blue}{$(as, x) \approx\!\makebox[5mm][l]{${}_{\text{set}}$} (bs, y)$}
       
   409   \end{center}\medskip
       
   410 
       
   411   \onslide<2->{
       
   412   \begin{center}
       
   413   \textcolor{blue}{
       
   414   \begin{tabular}{l}
       
   415   $\text{fv}(x) = \{x\}$\\[1mm]
       
   416   $\text{fv}(T_1 \rightarrow T_2) = \text{fv}(T_1) \cup \text{fv}(T_2)$\\
       
   417   \end{tabular}}
       
   418   \end{center}}
       
   419   \end{itemize}
       
   420 
       
   421   
       
   422   \only<3->{
       
   423   \begin{textblock}{4}(0.3,12)
       
   424   \begin{tikzpicture}
       
   425   \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
       
   426   {\tiny\color{darkgray}
       
   427   \begin{minipage}{3.4cm}\raggedright
       
   428   \begin{tabular}{r@ {\hspace{1mm}}l}
       
   429   \multicolumn{2}{@ {}l}{set+:}\\
       
   430   $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
       
   431   $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
       
   432   $\wedge$ & $\pi \cdot x = y$\\
       
   433   \\
       
   434   \end{tabular}
       
   435   \end{minipage}};
       
   436   \end{tikzpicture}
       
   437   \end{textblock}}
       
   438   \only<3->{
       
   439   \begin{textblock}{4}(5.2,12)
       
   440   \begin{tikzpicture}
       
   441   \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
       
   442   {\tiny\color{darkgray}
       
   443   \begin{minipage}{3.4cm}\raggedright
       
   444   \begin{tabular}{r@ {\hspace{1mm}}l}
       
   445   \multicolumn{2}{@ {}l}{set:}\\
       
   446   $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
       
   447   $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
       
   448   $\wedge$ & $\pi \cdot x = y$\\
       
   449   $\wedge$ & $\pi \cdot as = bs$\\
       
   450   \end{tabular}
       
   451   \end{minipage}};
       
   452   \end{tikzpicture}
       
   453   \end{textblock}}
       
   454   \only<3->{
       
   455   \begin{textblock}{4}(10.2,12)
       
   456   \begin{tikzpicture}
       
   457   \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
       
   458   {\tiny\color{darkgray}
       
   459   \begin{minipage}{3.4cm}\raggedright
       
   460   \begin{tabular}{r@ {\hspace{1mm}}l}
       
   461   \multicolumn{2}{@ {}l}{list:}\\
       
   462   $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
       
   463   $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
       
   464   $\wedge$ & $\pi \cdot x = y$\\
       
   465   $\wedge$ & $\pi \cdot as = bs$\\
       
   466   \end{tabular}
       
   467   \end{minipage}};
       
   468   \end{tikzpicture}
       
   469   \end{textblock}}
       
   470 
       
   471   \end{frame}}
       
   472   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   473 *}
       
   474 
       
   475 text_raw {*
       
   476   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   477   \mode<presentation>{
       
   478   \begin{frame}<1-2>
       
   479   \frametitle{\begin{tabular}{c}Examples\end{tabular}}
       
   480   \mbox{}\\[-3mm]
       
   481 
       
   482   \begin{center}
       
   483   \textcolor{blue}{
       
   484   \only<1>{$(\{x, y\}, x \rightarrow y) \approx_? (\{x, y\}, y \rightarrow x)$}
       
   485   \only<2>{$([x, y], x \rightarrow y) \approx_? ([x, y], y \rightarrow x)$}}
       
   486   \end{center}
       
   487 
       
   488   \begin{itemize}
       
   489   \item \textcolor{blue}{$\approx_{\text{set+}}$, $\approx_{\text{set}}$% 
       
   490   \only<2>{, \alert{$\not\approx_{\text{list}}$}}}
       
   491   \end{itemize}
       
   492 
       
   493   
       
   494   \only<1->{
       
   495   \begin{textblock}{4}(0.3,12)
       
   496   \begin{tikzpicture}
       
   497   \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
       
   498   {\tiny\color{darkgray}
       
   499   \begin{minipage}{3.4cm}\raggedright
       
   500   \begin{tabular}{r@ {\hspace{1mm}}l}
       
   501   \multicolumn{2}{@ {}l}{set+:}\\
       
   502   $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
       
   503   $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
       
   504   $\wedge$ & $\pi \cdot x = y$\\
       
   505   \\
       
   506   \end{tabular}
       
   507   \end{minipage}};
       
   508   \end{tikzpicture}
       
   509   \end{textblock}}
       
   510   \only<1->{
       
   511   \begin{textblock}{4}(5.2,12)
       
   512   \begin{tikzpicture}
       
   513   \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
       
   514   {\tiny\color{darkgray}
       
   515   \begin{minipage}{3.4cm}\raggedright
       
   516   \begin{tabular}{r@ {\hspace{1mm}}l}
       
   517   \multicolumn{2}{@ {}l}{set:}\\
       
   518   $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
       
   519   $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
       
   520   $\wedge$ & $\pi \cdot x = y$\\
       
   521   $\wedge$ & $\pi \cdot as = bs$\\
       
   522   \end{tabular}
       
   523   \end{minipage}};
       
   524   \end{tikzpicture}
       
   525   \end{textblock}}
       
   526   \only<1->{
       
   527   \begin{textblock}{4}(10.2,12)
       
   528   \begin{tikzpicture}
       
   529   \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
       
   530   {\tiny\color{darkgray}
       
   531   \begin{minipage}{3.4cm}\raggedright
       
   532   \begin{tabular}{r@ {\hspace{1mm}}l}
       
   533   \multicolumn{2}{@ {}l}{list:}\\
       
   534   $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
       
   535   $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
       
   536   $\wedge$ & $\pi \cdot x = y$\\
       
   537   $\wedge$ & $\pi \cdot as = bs$\\
       
   538   \end{tabular}
       
   539   \end{minipage}};
       
   540   \end{tikzpicture}
       
   541   \end{textblock}}
       
   542 
       
   543   \end{frame}}
       
   544   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   545 *}
       
   546 
       
   547 text_raw {*
       
   548   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   549   \mode<presentation>{
       
   550   \begin{frame}<1-2>
       
   551   \frametitle{\begin{tabular}{c}Examples\end{tabular}}
       
   552   \mbox{}\\[-3mm]
       
   553 
       
   554   \begin{center}
       
   555   \textcolor{blue}{\only<1>{$(\{x\}, x) \approx_? (\{x, y\}, x)$}}
       
   556   \end{center}
       
   557 
       
   558   \begin{itemize}
       
   559   \item \textcolor{blue}{$\approx_{\text{set+}}$, $\not\approx_{\text{set}}$,
       
   560         $\not\approx_{\text{list}}$}
       
   561   \end{itemize}
       
   562 
       
   563   
       
   564   \only<1->{
       
   565   \begin{textblock}{4}(0.3,12)
       
   566   \begin{tikzpicture}
       
   567   \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
       
   568   {\tiny\color{darkgray}
       
   569   \begin{minipage}{3.4cm}\raggedright
       
   570   \begin{tabular}{r@ {\hspace{1mm}}l}
       
   571   \multicolumn{2}{@ {}l}{set+:}\\
       
   572   $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
       
   573   $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
       
   574   $\wedge$ & $\pi \cdot x = y$\\
       
   575   \\
       
   576   \end{tabular}
       
   577   \end{minipage}};
       
   578   \end{tikzpicture}
       
   579   \end{textblock}}
       
   580   \only<1->{
       
   581   \begin{textblock}{4}(5.2,12)
       
   582   \begin{tikzpicture}
       
   583   \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
       
   584   {\tiny\color{darkgray}
       
   585   \begin{minipage}{3.4cm}\raggedright
       
   586   \begin{tabular}{r@ {\hspace{1mm}}l}
       
   587   \multicolumn{2}{@ {}l}{set:}\\
       
   588   $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
       
   589   $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
       
   590   $\wedge$ & $\pi \cdot x = y$\\
       
   591   $\wedge$ & $\pi \cdot as = bs$\\
       
   592   \end{tabular}
       
   593   \end{minipage}};
       
   594   \end{tikzpicture}
       
   595   \end{textblock}}
       
   596   \only<1->{
       
   597   \begin{textblock}{4}(10.2,12)
       
   598   \begin{tikzpicture}
       
   599   \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
       
   600   {\tiny\color{darkgray}
       
   601   \begin{minipage}{3.4cm}\raggedright
       
   602   \begin{tabular}{r@ {\hspace{1mm}}l}
       
   603   \multicolumn{2}{@ {}l}{list:}\\
       
   604   $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
       
   605   $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
       
   606   $\wedge$ & $\pi \cdot x = y$\\
       
   607   $\wedge$ & $\pi \cdot as = bs$\\
       
   608   \end{tabular}
       
   609   \end{minipage}};
       
   610   \end{tikzpicture}
       
   611   \end{textblock}}
       
   612 
       
   613   \only<2>{
       
   614   \begin{textblock}{6}(2.5,4)
       
   615   \begin{tikzpicture}
       
   616   \draw (0,0) node[inner sep=5mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
       
   617   {\normalsize
       
   618   \begin{minipage}{8cm}\raggedright
       
   619   \begin{itemize}
       
   620   \item \color{darkgray}$\alpha$-equivalences coincide when a single name is
       
   621   abstracted
       
   622   \item \color{darkgray}in that case they are equivalent to ``old-fashioned'' definitions of $\alpha$ 
       
   623   \end{itemize}
       
   624   \end{minipage}};
       
   625   \end{tikzpicture}
       
   626   \end{textblock}}
       
   627 
       
   628   \end{frame}}
       
   629   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   630 *}
       
   631 
       
   632 text_raw {*
       
   633   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   634   \mode<presentation>{
       
   635   \begin{frame}<1->
       
   636   \frametitle{\begin{tabular}{c}Our Specifications\end{tabular}}
       
   637   \mbox{}\\[-6mm]
       
   638 
       
   639   \mbox{}\hspace{10mm}
       
   640   \begin{tabular}{ll}
       
   641   \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\
       
   642   \hspace{5mm}\phantom{$|$} Var name\\
       
   643   \hspace{5mm}$|$ App trm trm\\
       
   644   \hspace{5mm}$|$ Lam x::name t::trm
       
   645   & \isacommand{bind} x \isacommand{in} t\\
       
   646   \hspace{5mm}$|$ Let as::assns t::trm
       
   647   & \isacommand{bind} bn(as) \isacommand{in} t\\
       
   648   \multicolumn{2}{l}{\isacommand{and} assns $=$}\\
       
   649   \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
       
   650   \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assns}\\
       
   651   \multicolumn{2}{l}{\isacommand{binder} bn \isacommand{where}}\\
       
   652   \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\
       
   653   \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\
       
   654   \end{tabular}
       
   655 
       
   656   \end{frame}}
       
   657   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   658 *}
       
   659 
       
   660 
       
   661 text_raw {*
       
   662   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   663   \mode<presentation>{
       
   664   \begin{frame}<1->[t]
       
   665   \frametitle{\begin{tabular}{c}Binder Clauses\end{tabular}}
       
   666 
       
   667   \begin{itemize}
       
   668   \item We need  to have a `clear scope' for a bound variable, and bound
       
   669   variables should not be free and bound at the same time.\bigskip
       
   670   \end{itemize}
       
   671 
       
   672   \begin{center}
       
   673   \only<1>{
       
   674   \begin{tabular}{@ {\hspace{-5mm}}l}
       
   675   \alert{\bf shallow binders}\\ 
       
   676   \hspace{4mm}Lam x::name t::trm\hspace{4mm} \isacommand{bind} x \isacommand{in} t\\
       
   677   \hspace{4mm}All xs::name set T::ty\hspace{4mm} \isacommand{bind} xs \isacommand{in} T\\
       
   678   \hspace{4mm}Foo x::name t$_1$::trm t$_2$::trm\hspace{4mm} 
       
   679      \isacommand{bind} x \isacommand{in} t$_1$, \isacommand{bind} x \isacommand{in} t$_2$\\
       
   680   \hspace{4mm}Bar x::name t$_1$::trm t$_2$::trm\hspace{4mm} 
       
   681      \isacommand{bind} x \isacommand{in} t$_1$ t$_2$\\
       
   682   \end{tabular}}
       
   683   \only<2>{
       
   684   \begin{tabular}{@ {\hspace{-5mm}}l}
       
   685   \alert{\bf deep binders} \\
       
   686   \hspace{4mm}Let as::assns t::trm\hspace{4mm} \isacommand{bind} bn(as) \isacommand{in} t\\
       
   687   \hspace{4mm}Foo as::assns t$_1$::trm t$_2$::trm\\
       
   688   \hspace{20mm}\isacommand{bind} bn(as) \isacommand{in} t$_1$, \isacommand{bind} bn(as) \isacommand{in} t$_2$\\[4mm]
       
   689   \makebox[0mm][l]{\alert{$\times$}}\hspace{4mm}Bar as::assns t$_1$::trm t$_2$::trm\\
       
   690   \hspace{20mm}\isacommand{bind} bn$_1$(as) \isacommand{in} t$_1$, \isacommand{bind} bn$_2$(as) \isacommand{in} t$_2$\\
       
   691   \end{tabular}}
       
   692   \only<3>{
       
   693   \begin{tabular}{@ {\hspace{-5mm}}l}
       
   694   {\bf deep \alert{recursive} binders} \\
       
   695   \hspace{4mm}Let\_rec as::assns t::trm\hspace{4mm} \isacommand{bind} bn(as) \isacommand{in} t as\\[4mm]
       
   696 
       
   697   \makebox[0mm][l]{\alert{$\times$}}\hspace{4mm}Foo\_rec as::assns t$_1$::trm t$_2$::trm\hspace{4mm}\\ 
       
   698   \hspace{20mm}\isacommand{bind} bn(as) \isacommand{in} t$_1$ as, \isacommand{bind} bn(as) \isacommand{in} t$_2$\\
       
   699 
       
   700   \end{tabular}}
       
   701   \end{center}
       
   702   
       
   703   \end{frame}}
       
   704   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   705 *}
       
   706 
       
   707 text_raw {*
       
   708   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   709   \mode<presentation>{
       
   710   \begin{frame}<1-5>
       
   711   \frametitle{\begin{tabular}{c}Our Work\end{tabular}}
       
   712   \mbox{}\\[-6mm]
       
   713 
       
   714     \begin{center}
       
   715   \begin{tikzpicture}[scale=1.5]
       
   716   %%%\draw[step=2mm] (-4,-1) grid (4,1);
       
   717   
       
   718   \onslide<1>{\draw[very thick] (0.7,0.4) circle (4.25mm);}
       
   719   \onslide<1>{\draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);}
       
   720   \onslide<1->{\draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);}
       
   721   
       
   722   \onslide<1>{\draw (-2.0, 0.845) --  (0.7,0.845);}
       
   723   \onslide<1>{\draw (-2.0,-0.045)  -- (0.7,-0.045);}
       
   724 
       
   725   \onslide<1>{\alert{\draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]classes\end{tabular}};}}
       
   726   \onslide<1->{\alert{\draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};}}
       
   727   \onslide<1>{\draw (1.8, 0.48) node[right=-0.1mm]
       
   728     {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ \onslide<1>{\alert{(sets of raw terms)}}\end{tabular}};}
       
   729   \onslide<1>{\draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};}
       
   730   \onslide<1->{\draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};}
       
   731   
       
   732   \onslide<1>{\draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);}
       
   733   \onslide<1>{\draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};}
       
   734 
       
   735   \onslide<1>{\draw[->, line width=2mm, red] (-1.0,-0.4) -- (0.35,0.16);}
       
   736   \end{tikzpicture}
       
   737   \end{center}
       
   738   
       
   739   \begin{textblock}{9.5}(6,3.5)
       
   740   \begin{itemize}
       
   741   \item<1-> defined fv and $\alpha$
       
   742   \item<2-> built quotient / new type
       
   743   \item<3-> derived a reasoning infrastructure ($\fresh$, distinctness, injectivity, cases,\ldots) 
       
   744   \item<4-> derive a {\bf stronger} cases lemma
       
   745   \item<5-> from this, a {\bf stronger} induction principle (Barendregt variable convention built in)\\
       
   746   \begin{center}
       
   747   \textcolor{blue}{Foo ($\lambda x. \lambda y. t$) ($\lambda u. \lambda v. s$)} 
       
   748   \end{center}
       
   749   \end{itemize}
       
   750   \end{textblock}
       
   751 
       
   752 
       
   753   \end{frame}}
       
   754   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   755 *}
       
   756 
       
   757 
       
   758 text_raw {*
       
   759   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   760   \mode<presentation>{
       
   761   \begin{frame}<1->
       
   762   \frametitle{\begin{tabular}{c}Part I: Conclusion\end{tabular}}
       
   763   \mbox{}\\[-6mm]
       
   764 
       
   765   \begin{itemize}
       
   766   \item the user does not see anything of the raw level\medskip
       
   767   \only<1>{\begin{center}
       
   768   Lam a (Var a) \alert{$=$} Lam b (Var b)
       
   769   \end{center}\bigskip}
       
   770 
       
   771   \item<2-> \textcolor{blue}{http://isabelle.in.tum.de/nominal/}
       
   772   \end{itemize}
       
   773 
       
   774   
       
   775   \end{frame}}
       
   776   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   777 *}
       
   778 
       
   779 text_raw {*
       
   780   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   781   \mode<presentation>{
       
   782   \begin{frame}<1->
       
   783   \frametitle{\begin{tabular}{c}Part II: $\alpha\beta$-Equal Terms\end{tabular}}
       
   784 
       
   785   \begin{itemize}
       
   786   \item we have implemented a quotient package for Isabelle;
       
   787   \item can now introduce the type of $\alpha\beta$-equal terms (starting
       
   788   from $\alpha$-equal terms).
       
   789   \item on paper this looks easy\pause\bigskip
       
   790   \end{itemize}
       
   791 
       
   792   \begin{center}
       
   793   \begin{tabular}{lll}
       
   794   \smath{x \approx_{\alpha\beta} y} & \smath{\;\not\Rightarrow\;} & 
       
   795   \smath{\text{supp}(x) = \text{supp}(y)}\\
       
   796   & \smath{\;\not\Rightarrow\;} & 
       
   797   \smath{\text{size}(x) = \text{size}(y)}\\
       
   798   \end{tabular}
       
   799   \end{center}\pause
       
   800 
       
   801   \small
       
   802   \begin{center}
       
   803   Andy: \smath{\;\;\text{supp}\mbox{\isasymlbrakk}x\mbox{\isasymrbrakk}_{\approx_{\alpha\beta}} = 
       
   804   {\text{\large$\bigcap$}} \{ \text{supp}(y) \;|\; y \approx_{\alpha\beta} x\}}
       
   805   \end{center}
       
   806 
       
   807   \end{frame}}
       
   808   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   809 *}
       
   810 
       
   811 text_raw {*
       
   812   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   813   \mode<presentation>{
       
   814   \begin{frame}[c]
       
   815   \frametitle{}
       
   816 
       
   817   \begin{center}
       
   818   \begin{tabular}{rcl}
       
   819   \smath{x\;[y := s]} &           \smath{\dn} & \smath{\text{if}\;x=y\;\text{then}\;s\;\text{else}\;x}\bigskip\\
       
   820   \smath{t_1 t_2\;[y := s]} &     \smath{\dn} & \smath{t_1[y := s]\;t_2[y := s]}\bigskip\\
       
   821   \smath{\lambda x.t\;[y := s]} & \smath{\dn} & \smath{\lambda x.\; t[y := s]}\\
       
   822   \multicolumn{3}{r}{provided \smath{x \fresh (y, s)}}
       
   823   \end{tabular}
       
   824   \end{center}
       
   825 
       
   826   \end{frame}}
       
   827   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   828 *}
       
   829 
       
   830 text_raw {*
       
   831   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   832   \mode<presentation>{
       
   833   \begin{frame}[t]
       
   834   \frametitle{\begin{tabular}{c}Part III: Regular Languages\\[-8mm]\end{tabular}}
       
   835 
       
   836   \begin{center}
       
   837   \huge\bf\textcolor{gray}{in Theorem Provers}\\
       
   838   \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots}
       
   839   \end{center}
       
   840 
       
   841   \begin{itemize}
       
   842   \item automata @{text "\<Rightarrow>"} graphs, matrices, functions
       
   843   \item<2-> combining automata/graphs
       
   844 
       
   845   \onslide<2->{
       
   846   \begin{center}
       
   847   \begin{tabular}{ccc}
       
   848   \begin{tikzpicture}[scale=1]
       
   849   %\draw[step=2mm] (-1,-1) grid (1,1);
       
   850   
       
   851   \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
       
   852   \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
       
   853 
       
   854   \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   855   \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   856   
       
   857   \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   858   \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   859 
       
   860   \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   861   \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   862   \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   863 
       
   864   \draw (-0.6,0.0) node {\small$A_1$};
       
   865   \draw ( 0.6,0.0) node {\small$A_2$};
       
   866   \end{tikzpicture}}
       
   867 
       
   868   & 
       
   869 
       
   870   \onslide<3->{\raisebox{1.1mm}{\bf\Large$\;\Rightarrow\,$}}
       
   871 
       
   872   &
       
   873 
       
   874   \onslide<3->{\begin{tikzpicture}[scale=1]
       
   875   %\draw[step=2mm] (-1,-1) grid (1,1);
       
   876   
       
   877   \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
       
   878   \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
       
   879 
       
   880   \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   881   \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   882   
       
   883   \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   884   \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   885 
       
   886   \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   887   \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   888   \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
       
   889   
       
   890   \draw (C) to [red, very thick, bend left=45] (B);
       
   891   \draw (D) to [red, very thick, bend right=45] (B);
       
   892 
       
   893   \draw (-0.6,0.0) node {\small$A_1$};
       
   894   \draw ( 0.6,0.0) node {\small$A_2$};
       
   895   \end{tikzpicture}}
       
   896 
       
   897   \end{tabular}
       
   898   \end{center}\medskip
       
   899 
       
   900   \only<4-5>{
       
   901   \begin{tabular}{@ {\hspace{-5mm}}l@ {}}
       
   902   disjoint union:\\[2mm]
       
   903   \smath{A_1\uplus A_2 \dn \{(1, x)\,|\, x \in A_1\} \,\cup\, \{(2, y)\,|\, y \in A_2\}}
       
   904   \end{tabular}}
       
   905   \end{itemize}
       
   906 
       
   907   \only<5>{
       
   908   \begin{textblock}{13.9}(0.7,7.7)
       
   909   \begin{block}{}
       
   910   \medskip
       
   911   \begin{minipage}{14cm}\raggedright
       
   912   Problems with definition for regularity:\bigskip\\
       
   913   \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}\bigskip
       
   914   \end{minipage}
       
   915   \end{block}
       
   916   \end{textblock}}
       
   917   \medskip
       
   918 
       
   919   \only<6->{\underline{A solution}:\;\;use \smath{\text{nat}}s \;@{text "\<Rightarrow>"}\; state nodes\medskip}
       
   920 
       
   921   \only<7->{You have to \alert{rename} states!}
       
   922 
       
   923   \end{frame}}
       
   924   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   925 *}
       
   926 
       
   927 text_raw {*
       
   928   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   929   \mode<presentation>{
       
   930   \begin{frame}[t]
       
   931   \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
       
   932   \mbox{}\\[-15mm]\mbox{}
       
   933 
       
   934   \begin{center}
       
   935   \huge\bf\textcolor{gray}{in Theorem Provers}\\
       
   936   \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots}
       
   937   \end{center}
       
   938 
       
   939   \begin{itemize}
       
   940   \item Kozen's ``paper'' proof of Myhill-Nerode:\\ 
       
   941   \hspace{2cm}requires absence of \alert{inaccessible states}
       
   942   \end{itemize}\bigskip\bigskip
       
   943 
       
   944   \begin{center}
       
   945   \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}
       
   946   \end{center}
       
   947 
       
   948 
       
   949   \end{frame}}
       
   950   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   951 *}
       
   952 
       
   953 text_raw {*
       
   954   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   955   \mode<presentation>{
       
   956   \begin{frame}[t]
       
   957   \frametitle{}
       
   958   \mbox{}\\[25mm]\mbox{}
       
   959 
       
   960   \begin{textblock}{13.9}(0.7,1.2)
       
   961   \begin{block}{}
       
   962   \begin{minipage}{13.4cm}\raggedright
       
   963   {\bf Definition:}\smallskip\\
       
   964   
       
   965   A language \smath{A} is \alert{regular}, provided there exists a\\ 
       
   966   \alert{regular expression} that matches all strings of \smath{A}.
       
   967   \end{minipage}
       
   968   \end{block}
       
   969   \end{textblock}\pause
       
   970   
       
   971   {\noindent\large\bf\alert{\ldots{}and forget about automata}}\bigskip\bigskip\pause
       
   972 
       
   973   Infrastructure for free. But do we lose anything?\medskip\pause
       
   974 
       
   975   \begin{minipage}{1.1\textwidth}
       
   976   \begin{itemize}
       
   977   \item pumping lemma\pause
       
   978   \item closure under complementation\pause
       
   979   \item \only<6>{regular expression matching}%
       
   980        \only<7->{\soutt{regular expression matching}
       
   981   {\footnotesize(@{text "\<Rightarrow>"}Brozowski'64, Owens et al '09)}}
       
   982   \item<8-> most textbooks are about automata
       
   983   \end{itemize}
       
   984   \end{minipage}
       
   985 
       
   986   
       
   987   \end{frame}}
       
   988   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
   989 
       
   990 *}
       
   991 
       
   992 text_raw {*
       
   993   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   994   \mode<presentation>{
       
   995   \begin{frame}[c]
       
   996   \frametitle{\LARGE The Myhill-Nerode Theorem}
       
   997 
       
   998   \begin{itemize}
       
   999   \item provides necessary and suf\!ficient conditions\\ for a language 
       
  1000   being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\bigskip
       
  1001 
       
  1002   \item key is the equivalence relation:\medskip
       
  1003   \begin{center}
       
  1004   \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}
       
  1005   \end{center}
       
  1006   \end{itemize}
       
  1007 
       
  1008  
       
  1009   \end{frame}}
       
  1010   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
  1011 
       
  1012 *}
       
  1013 
       
  1014 text_raw {*
       
  1015   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
  1016   \mode<presentation>{
       
  1017   \begin{frame}[c]
       
  1018   \frametitle{\LARGE The Myhill-Nerode Theorem}
       
  1019 
       
  1020   \begin{center}
       
  1021   \only<1>{%
       
  1022   \begin{tikzpicture}[scale=3]
       
  1023   \draw[very thick] (0.5,0.5) circle (.6cm);
       
  1024   \end{tikzpicture}}%
       
  1025   \only<2->{%
       
  1026   \begin{tikzpicture}[scale=3]
       
  1027   \draw[very thick] (0.5,0.5) circle (.6cm);
       
  1028   \clip[draw] (0.5,0.5) circle (.6cm);
       
  1029   \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
       
  1030   \end{tikzpicture}}
       
  1031   \end{center}
       
  1032   
       
  1033   \begin{itemize}
       
  1034   \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}}
       
  1035   \end{itemize}
       
  1036 
       
  1037   \begin{textblock}{5}(2.1,5.3)
       
  1038   \begin{tikzpicture}
       
  1039   \node at (0,0) [single arrow, fill=red,text=white, minimum height=2cm]
       
  1040   {$U\!N\!IV$};
       
  1041   \draw (-0.3,-1.1) node {\begin{tabular}{l}set of all\\[-1mm] strings\end{tabular}};
       
  1042   \end{tikzpicture}
       
  1043   \end{textblock}
       
  1044 
       
  1045   \only<2->{%
       
  1046   \begin{textblock}{5}(9.1,7.2)
       
  1047   \begin{tikzpicture}
       
  1048   \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm]
       
  1049   {@{text "\<lbrakk>x\<rbrakk>"}$_{\approx_{A}}$};
       
  1050   \draw (0.9,-1.1) node {\begin{tabular}{l}an equivalence class\end{tabular}};
       
  1051   \end{tikzpicture}
       
  1052   \end{textblock}}
       
  1053 
       
  1054   \only<3->{
       
  1055   \begin{textblock}{11.9}(1.7,3)
       
  1056   \begin{block}{}
       
  1057   \begin{minipage}{11.4cm}\raggedright
       
  1058   Two directions:\medskip\\
       
  1059   \begin{tabular}{@ {}ll}
       
  1060   1.)\;finite $\Rightarrow$ regular\\
       
  1061   \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_A) \Rightarrow \exists r.\;A = {\cal L}(r)}\\[3mm]
       
  1062   2.)\;regular $\Rightarrow$ finite\\
       
  1063   \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}
       
  1064   \end{tabular}
       
  1065 
       
  1066   \end{minipage}
       
  1067   \end{block}
       
  1068   \end{textblock}}
       
  1069 
       
  1070   \end{frame}}
       
  1071   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
  1072 
       
  1073 *}
       
  1074 
       
  1075 
       
  1076 
       
  1077 text_raw {*
       
  1078   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
  1079   \mode<presentation>{
       
  1080   \begin{frame}<-1>[c]
       
  1081   \frametitle{\begin{tabular}{@ {}l}\LARGE% 
       
  1082   Transitions between Eq-Classes\end{tabular}}
       
  1083 
       
  1084   \begin{center}
       
  1085   \begin{tikzpicture}[scale=3]
       
  1086   \draw[very thick] (0.5,0.5) circle (.6cm);
       
  1087   \clip[draw] (0.5,0.5) circle (.6cm);
       
  1088   \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
       
  1089   \draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8);
       
  1090   \draw[blue, fill] (0.8, 0.4) rectangle (1.0, 0.6);
       
  1091   \draw[white] (0.1,0.7) node (X) {$X$};
       
  1092   \draw[white] (0.9,0.5) node (Y) {$Y$};
       
  1093   \draw[blue, ->, line width = 2mm, bend left=45] (X) -- (Y);
       
  1094   \node [inner sep=1pt,label=above:\textcolor{blue}{$c$}] at ($ (X)!.5!(Y) $) {};
       
  1095   \end{tikzpicture}
       
  1096   \end{center}
       
  1097 
       
  1098   \begin{center}
       
  1099   \smath{X \stackrel{c}{\longrightarrow} Y \;\dn\; X ; c \subseteq Y}
       
  1100   \end{center}
       
  1101 
       
  1102   \onslide<8>{
       
  1103   \begin{tabular}{c}
       
  1104   \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
       
  1105   \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
       
  1106   \node[state,initial] (q_0) {$R_1$};
       
  1107   \end{tikzpicture}
       
  1108   \end{tabular}}
       
  1109 
       
  1110   \end{frame}}
       
  1111   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
  1112 *}
       
  1113 
       
  1114 text_raw {*
       
  1115   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
  1116   \mode<presentation>{
       
  1117   \begin{frame}[c]
       
  1118   \frametitle{\LARGE The Other Direction}
       
  1119 
       
  1120   One has to prove
       
  1121 
       
  1122   \begin{center}
       
  1123   \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}
       
  1124   \end{center}
       
  1125 
       
  1126   by induction on \smath{r}. Not trivial, but after a bit 
       
  1127   of thinking, one can find a \alert{refined} relation:\bigskip
       
  1128 
       
  1129   
       
  1130   \begin{center}
       
  1131   \mbox{\begin{tabular}{c@ {\hspace{7mm}}c@ {\hspace{7mm}}c}
       
  1132   \begin{tikzpicture}[scale=1.1]
       
  1133   %Circle
       
  1134   \draw[thick] (0,0) circle (1.1);    
       
  1135   \end{tikzpicture}
       
  1136   &
       
  1137   \begin{tikzpicture}[scale=1.1]
       
  1138   %Circle
       
  1139   \draw[thick] (0,0) circle (1.1);    
       
  1140   %Main rays
       
  1141   \foreach \a in {0, 90,...,359}
       
  1142     \draw[very thick] (0, 0) -- (\a:1.1);
       
  1143   \foreach \a / \l in {45/1, 135/2, 225/3, 315/4}
       
  1144       \draw (\a: 0.65) node {\small$a_\l$};
       
  1145   \end{tikzpicture}
       
  1146   &
       
  1147   \begin{tikzpicture}[scale=1.1]
       
  1148   %Circle
       
  1149   \draw[red, thick] (0,0) circle (1.1);    
       
  1150   %Main rays
       
  1151   \foreach \a in {0, 45,...,359}
       
  1152      \draw[red, very thick] (0, 0) -- (\a:1.1);
       
  1153   \foreach \a / \l in {22.5/1.1, 67.5/1.2, 112.5/2.1, 157.5/2.2, 202.4/3.1, 247.5/3.2, 292.5/4.1, 337.5/4.2}
       
  1154       \draw (\a: 0.77) node {\textcolor{red}{\footnotesize$a_{\l}$}};
       
  1155   \end{tikzpicture}\\
       
  1156   \small\smath{U\!N\!IV} & 
       
  1157   \small\smath{U\!N\!IV /\!/ \approx_{{\cal L}(r)}} &
       
  1158   \small\smath{U\!N\!IV /\!/ \alert{R}}
       
  1159   \end{tabular}}
       
  1160   \end{center}
       
  1161 
       
  1162   \begin{textblock}{5}(9.8,2.6)
       
  1163   \begin{tikzpicture}
       
  1164   \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}};
       
  1165   \end{tikzpicture}
       
  1166   \end{textblock}
       
  1167   
       
  1168 
       
  1169   \end{frame}}
       
  1170   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
  1171 *}
       
  1172 
       
  1173 text_raw {*
       
  1174   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
  1175   \mode<presentation>{
       
  1176   \begin{frame}[t]
       
  1177   \frametitle{\LARGE\begin{tabular}{c}Derivatives of RExps\end{tabular}}
       
  1178 
       
  1179   \begin{itemize}
       
  1180   \item introduced by Brozowski~'64
       
  1181   \item a regular expressions after a character has been parsed\\[-18mm]\mbox{}
       
  1182   \end{itemize}
       
  1183 
       
  1184   \only<1>{%
       
  1185   \textcolor{blue}{%
       
  1186   \begin{center}
       
  1187   \begin{tabular}{@ {}lc@ {\hspace{3mm}}l@ {}}
       
  1188   der c $\varnothing$     & $\dn$ & $\varnothing$\\
       
  1189   der c []                & $\dn$ & $\varnothing$\\
       
  1190   der c d                 & $\dn$ & if c $=$ d then [] else $\varnothing$\\
       
  1191   der c ($r_1 + r_2$)     & $\dn$ & (der c $r_1$) $+$ (der c $r_2$)\\
       
  1192   der c ($r^\star$)       & $\dn$ & (der c $r$) $\cdot$ $r^\star$\\
       
  1193   der c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\
       
  1194                           &       & then (der c $r_1$) $\cdot$ $r_2$ $+$ (der c $r_2$)\\
       
  1195                           &       & else (der c $r_1$) $\cdot$ $r_2$\\
       
  1196   \end{tabular}
       
  1197   \end{center}}}
       
  1198   \only<2>{%
       
  1199   \textcolor{blue}{%
       
  1200   \begin{center}
       
  1201   \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
       
  1202   pder c $\varnothing$     & $\dn$ & \alert{$\{\}$}\\
       
  1203   pder c []                & $\dn$ & \alert{$\{\}$}\\
       
  1204   pder c d                 & $\dn$ & if c $=$ d then $\{$[]$\}$ else $\{\}$\\
       
  1205   pder c ($r_1 + r_2$)     & $\dn$ & (pder c $r_1$) \alert{$\cup$} (der c $r_2$)\\
       
  1206   pder c ($r^\star$)       & $\dn$ & (pder c $r$) $\cdot$ $r^\star$\\
       
  1207   pder c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\
       
  1208                           &       & then (pder c $r_1$) $\cdot$ $r_2$ \alert{$\cup$} (pder c $r_2$)\\
       
  1209                           &       & else (pder c $r_1$) $\cdot$ $r_2$\\
       
  1210   \end{tabular}
       
  1211   \end{center}}}
       
  1212 
       
  1213   \only<2>{
       
  1214   \begin{textblock}{6}(8.5,4.7)
       
  1215   \begin{block}{}
       
  1216   \begin{quote}
       
  1217   \begin{minipage}{6cm}\raggedright
       
  1218   \begin{itemize}
       
  1219   \item partial derivatives
       
  1220   \item by Antimirov~'95
       
  1221   \end{itemize}
       
  1222   \end{minipage}
       
  1223   \end{quote}
       
  1224   \end{block}
       
  1225   \end{textblock}}
       
  1226 
       
  1227   \end{frame}}
       
  1228   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
  1229 *}
       
  1230 
       
  1231 
       
  1232 text_raw {*
       
  1233   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
  1234   \mode<presentation>{
       
  1235   \begin{frame}[t]
       
  1236   \frametitle{\LARGE Partial Derivatives}
       
  1237 
       
  1238   \mbox{}\\[0mm]\mbox{}
       
  1239 
       
  1240   \begin{itemize}
       
  1241 
       
  1242   \item \alt<1>{\smath{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}}
       
  1243             {\smath{\underbrace{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}_{R}}} 
       
  1244         refines \textcolor{blue}{$x$ $\approx_{{\cal L}(r)}$ $y$}\\[16mm]\pause
       
  1245   \item \smath{\text{finite} (U\!N\!IV /\!/ R)} \bigskip\pause
       
  1246   \item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}. Qed.
       
  1247   \end{itemize}
       
  1248   
       
  1249   \only<2->{%
       
  1250   \begin{textblock}{5}(3.9,7.2)
       
  1251   \begin{tikzpicture}
       
  1252   \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}};
       
  1253   \draw (2.2,0) node {Antimirov '95};
       
  1254   \end{tikzpicture}
       
  1255   \end{textblock}}
       
  1256 
       
  1257   \end{frame}}
       
  1258   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
  1259 *}
       
  1260 
       
  1261 
       
  1262 
       
  1263 text_raw {*
       
  1264   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
  1265   \mode<presentation>{
       
  1266   \begin{frame}[t]
       
  1267   \frametitle{\LARGE What Have We Achieved?}
       
  1268 
       
  1269   \begin{itemize}
       
  1270   \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}}
       
  1271   \medskip\pause
       
  1272   \item regular languages are closed under complementation; this is now easy
       
  1273   \begin{center}
       
  1274   \smath{U\!N\!IV /\!/ \approx_A \;\;=\;\; U\!N\!IV /\!/ \approx_{\overline{A}}}
       
  1275   \end{center}\pause\medskip
       
  1276   
       
  1277   \item non-regularity (\smath{a^nb^n})\medskip\pause\pause
       
  1278 
       
  1279   \item take \alert{\bf any} language; build the language of substrings\\
       
  1280   \pause
       
  1281 
       
  1282   then this language \alert{\bf is} regular\;\; (\smath{a^nb^n} $\Rightarrow$ \smath{a^\star{}b^\star})
       
  1283   
       
  1284   \end{itemize}
       
  1285 
       
  1286 \only<2>{
       
  1287 \begin{textblock}{10}(4,14)
       
  1288 \small
       
  1289 \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}
       
  1290 \end{textblock}} 
       
  1291 
       
  1292 \only<4>{
       
  1293 \begin{textblock}{5}(2,8.6)
       
  1294 \begin{minipage}{8.8cm}
       
  1295 \begin{block}{}
       
  1296 \begin{minipage}{8.6cm}
       
  1297 If there exists a sufficiently large set \smath{B} (for example infinitely large), 
       
  1298 such that
       
  1299 
       
  1300 \begin{center}
       
  1301 \smath{\forall x,y \in B.\; x \not= y \;\Rightarrow\; x \not\approx_{A} y}. 
       
  1302 \end{center}  
       
  1303 
       
  1304 then \smath{A} is not regular.\hspace{1.3cm}\small(\smath{B \dn \bigcup_n a^n})
       
  1305 \end{minipage}
       
  1306 \end{block}
       
  1307 \end{minipage}
       
  1308 \end{textblock}
       
  1309 }
       
  1310 
       
  1311   \end{frame}}
       
  1312   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
  1313 *}
       
  1314 
       
  1315 
       
  1316 text_raw {*
       
  1317   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
  1318   \mode<presentation>{
       
  1319   \begin{frame}[b]
       
  1320   \frametitle{\mbox{}\\[2cm]\textcolor{red}{Thank you!\\[5mm]Questions?}}
       
  1321 
       
  1322   \end{frame}}
       
  1323   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
  1324 *}
       
  1325 
       
  1326 
       
  1327 
       
  1328 
       
  1329 text_raw {*
       
  1330   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
  1331   \mode<presentation>{
       
  1332   \begin{frame}<1-2>[c]
       
  1333   \frametitle{\begin{tabular}{c}Examples\end{tabular}}
       
  1334   \mbox{}\\[-6mm]
       
  1335 
       
  1336   \textcolor{blue}{
       
  1337   \begin{center}
       
  1338   $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, a \rightarrow b)$
       
  1339   $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, b \rightarrow a)$
       
  1340   \end{center}}
       
  1341 
       
  1342   \textcolor{blue}{
       
  1343   \begin{center}
       
  1344   $(\{a,b\}, (a \rightarrow b, a \rightarrow b))$\\ 
       
  1345   \hspace{17mm}$\not\approx_\alpha (\{a, b\}, (a \rightarrow b, b \rightarrow a))$
       
  1346   \end{center}}
       
  1347   
       
  1348   \onslide<2->
       
  1349   {1.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$, 
       
  1350    \isacommand{bind (set)} as \isacommand{in} $\tau_2$\medskip
       
  1351 
       
  1352    2.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$ $\tau_2$ 
       
  1353   }
       
  1354 
       
  1355   \end{frame}}
       
  1356   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
  1357 *}
       
  1358 
       
  1359 
       
  1360 
       
  1361 (*<*)
       
  1362 end
       
  1363 (*>*)