ESOP-Paper/Appendix.thy
branchNominal2-Isabelle2012
changeset 3169 b6873d123f9b
parent 3168 a6f3e1b08494
child 3170 89715c48f728
equal deleted inserted replaced
3168:a6f3e1b08494 3169:b6873d123f9b
     1 (*<*)
       
     2 theory Appendix
       
     3 imports "../Nominal/Nominal2" "~~/src/HOL/Library/LaTeXsugar"
       
     4 begin
       
     5 
       
     6 consts
       
     7   fv :: "'a \<Rightarrow> 'b"
       
     8   abs_set :: "'a \<Rightarrow> 'b \<Rightarrow> 'c"
       
     9   alpha_bn :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
       
    10   abs_set2 :: "'a \<Rightarrow> perm \<Rightarrow> 'b \<Rightarrow> 'c"
       
    11   Abs_dist :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" 
       
    12   Abs_print :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" 
       
    13 
       
    14 definition
       
    15  "equal \<equiv> (op =)" 
       
    16 
       
    17 notation (latex output)
       
    18   swap ("'(_ _')" [1000, 1000] 1000) and
       
    19   fresh ("_ # _" [51, 51] 50) and
       
    20   fresh_star ("_ #\<^sup>* _" [51, 51] 50) and
       
    21   supp ("supp _" [78] 73) and
       
    22   uminus ("-_" [78] 73) and
       
    23   If  ("if _ then _ else _" 10) and
       
    24   alpha_set ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{set}}$}}>\<^bsup>_, _, _\<^esup> _") and
       
    25   alpha_lst ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{list}}$}}>\<^bsup>_, _, _\<^esup> _") and
       
    26   alpha_res ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{res}}$}}>\<^bsup>_, _, _\<^esup> _") and
       
    27   abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and
       
    28   abs_set2 ("_ \<approx>\<^raw:\raisebox{-1pt}{\makebox[0mm][l]{$\,_{\textit{list}}$}}>\<^bsup>_\<^esup>  _") and
       
    29   fv ("fa'(_')" [100] 100) and
       
    30   equal ("=") and
       
    31   alpha_abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and 
       
    32   Abs_set ("[_]\<^bsub>set\<^esub>._" [20, 101] 999) and
       
    33   Abs_lst ("[_]\<^bsub>list\<^esub>._") and
       
    34   Abs_dist ("[_]\<^bsub>#list\<^esub>._") and
       
    35   Abs_res ("[_]\<^bsub>res\<^esub>._") and
       
    36   Abs_print ("_\<^bsub>set\<^esub>._") and
       
    37   Cons ("_::_" [78,77] 73) and
       
    38   supp_set ("aux _" [1000] 10) and
       
    39   alpha_bn ("_ \<approx>bn _")
       
    40 
       
    41 consts alpha_trm ::'a
       
    42 consts fa_trm :: 'a
       
    43 consts alpha_trm2 ::'a
       
    44 consts fa_trm2 :: 'a
       
    45 consts ast :: 'a
       
    46 consts ast' :: 'a
       
    47 notation (latex output) 
       
    48   alpha_trm ("\<approx>\<^bsub>trm\<^esub>") and
       
    49   fa_trm ("fa\<^bsub>trm\<^esub>") and
       
    50   alpha_trm2 ("'(\<approx>\<^bsub>assn\<^esub>, \<approx>\<^bsub>trm\<^esub>')") and
       
    51   fa_trm2 ("'(fa\<^bsub>assn\<^esub>, fa\<^bsub>trm\<^esub>')") and
       
    52   ast ("'(as, t')") and
       
    53   ast' ("'(as', t\<PRIME> ')")
       
    54 
       
    55 (*>*)
       
    56 
       
    57 text {*
       
    58 \appendix
       
    59 \section*{Appendix}
       
    60 
       
    61   Details for one case in Theorem \ref{suppabs}, which the reader might like to ignore. 
       
    62   By definition of the abstraction type @{text "abs_set"} 
       
    63   we have 
       
    64   %
       
    65   \begin{equation}\label{abseqiff}
       
    66   @{thm (lhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} \;\;\text{if and only if}\;\; 
       
    67   @{thm (rhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]}
       
    68   \end{equation}
       
    69   
       
    70   \noindent
       
    71   and also
       
    72   
       
    73   \begin{equation}\label{absperm}
       
    74   @{thm permute_Abs(1)[no_vars]}%
       
    75   \end{equation}
       
    76 
       
    77   \noindent
       
    78   The second fact derives from the definition of permutations acting on pairs 
       
    79   and $\alpha$-equivalence being equivariant. With these two facts at our disposal, we can show 
       
    80   the following lemma about swapping two atoms in an abstraction.
       
    81   
       
    82   \begin{lemma}
       
    83   @{thm[mode=IfThen] Abs_swap1(1)[where bs="as", no_vars]}
       
    84   \end{lemma}
       
    85   
       
    86   \begin{proof}
       
    87   This lemma is straightforward using \eqref{abseqiff} and observing that
       
    88   the assumptions give us @{term "(a \<rightleftharpoons> b) \<bullet> (supp x - as) = (supp x - as)"}.
       
    89   Moreover @{text supp} and set difference are equivariant (see \cite{HuffmanUrban10}).
       
    90   \end{proof}
       
    91   
       
    92   \noindent
       
    93   Assuming that @{text "x"} has finite support, this lemma together 
       
    94   with \eqref{absperm} allows us to show
       
    95   
       
    96   \begin{equation}\label{halfone}
       
    97   @{thm Abs_supports(1)[no_vars]}
       
    98   \end{equation}
       
    99   
       
   100   \noindent
       
   101   which gives us ``one half'' of
       
   102   Theorem~\ref{suppabs} (the notion of supports is defined in \cite{HuffmanUrban10}). 
       
   103   The ``other half'' is a bit more involved. To establish 
       
   104   it, we use a trick from \cite{Pitts04} and first define an auxiliary 
       
   105   function @{text aux}, taking an abstraction as argument:
       
   106   @{thm supp_set.simps[THEN eq_reflection, no_vars]}.
       
   107   
       
   108   We can show that 
       
   109   @{text "aux"} is equivariant (since @{term "p \<bullet> (supp x - as) = (supp (p \<bullet> x)) - (p \<bullet> as)"}) 
       
   110   and therefore has empty support. 
       
   111   This in turn means
       
   112   
       
   113   \begin{center}
       
   114   @{text "supp (aux ([as]\<^bsub>set\<^esub>. x)) \<subseteq> supp ([as]\<^bsub>set\<^esub> x)"}
       
   115   \end{center}
       
   116   
       
   117   \noindent
       
   118   Assuming @{term "supp x - as"} is a finite set,
       
   119   we further obtain
       
   120   
       
   121   \begin{equation}\label{halftwo}
       
   122   @{thm (concl) Abs_supp_subset1(1)[no_vars]}
       
   123   \end{equation}
       
   124   
       
   125   \noindent
       
   126   since for finite sets of atoms, @{text "bs"}, we have 
       
   127   @{thm (concl) supp_finite_atom_set[where S="bs", no_vars]}.
       
   128   Finally, taking \eqref{halfone} and \eqref{halftwo} together establishes 
       
   129   Theorem~\ref{suppabs}. 
       
   130 
       
   131 *}
       
   132 
       
   133 (*<*)
       
   134 end
       
   135 (*>*)