Attic/Quot/Quotient.thy
branchNominal2-Isabelle2012
changeset 3169 b6873d123f9b
parent 3168 a6f3e1b08494
child 3170 89715c48f728
equal deleted inserted replaced
3168:a6f3e1b08494 3169:b6873d123f9b
     1 (*  Title:      Quotient.thy
       
     2     Author:     Cezary Kaliszyk and Christian Urban
       
     3 *)
       
     4 
       
     5 theory Quotient
       
     6 imports Plain ATP_Linkup 
       
     7 uses
       
     8   ("quotient_info.ML")
       
     9   ("quotient_typ.ML")
       
    10   ("quotient_def.ML")
       
    11   ("quotient_term.ML")
       
    12   ("quotient_tacs.ML")
       
    13 begin
       
    14 
       
    15 
       
    16 text {*
       
    17   Basic definition for equivalence relations
       
    18   that are represented by predicates.
       
    19 *}
       
    20 
       
    21 definition
       
    22   "equivp E \<equiv> \<forall>x y. E x y = (E x = E y)"
       
    23 
       
    24 definition
       
    25   "reflp E \<equiv> \<forall>x. E x x"
       
    26 
       
    27 definition
       
    28   "symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"
       
    29 
       
    30 definition
       
    31   "transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"
       
    32 
       
    33 lemma equivp_reflp_symp_transp:
       
    34   shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
       
    35   unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
       
    36   by blast
       
    37 
       
    38 lemma equivp_reflp:
       
    39   shows "equivp E \<Longrightarrow> E x x"
       
    40   by (simp only: equivp_reflp_symp_transp reflp_def)
       
    41 
       
    42 lemma equivp_symp:
       
    43   shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y x"
       
    44   by (metis equivp_reflp_symp_transp symp_def)
       
    45 
       
    46 lemma equivp_transp:
       
    47   shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y z \<Longrightarrow> E x z"
       
    48   by (metis equivp_reflp_symp_transp transp_def)
       
    49 
       
    50 lemma equivpI:
       
    51   assumes "reflp R" "symp R" "transp R"
       
    52   shows "equivp R"
       
    53   using assms by (simp add: equivp_reflp_symp_transp)
       
    54 
       
    55 lemma identity_equivp:
       
    56   shows "equivp (op =)"
       
    57   unfolding equivp_def
       
    58   by auto
       
    59 
       
    60 text {* Partial equivalences: not yet used anywhere *}
       
    61 
       
    62 definition
       
    63   "part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
       
    64 
       
    65 lemma equivp_implies_part_equivp:
       
    66   assumes a: "equivp E"
       
    67   shows "part_equivp E"
       
    68   using a
       
    69   unfolding equivp_def part_equivp_def
       
    70   by auto
       
    71 
       
    72 text {* Composition of Relations *}
       
    73 
       
    74 abbreviation
       
    75   rel_conj (infixr "OOO" 75)
       
    76 where
       
    77   "r1 OOO r2 \<equiv> r1 OO r2 OO r1"
       
    78 
       
    79 lemma eq_comp_r:
       
    80   shows "((op =) OOO R) = R"
       
    81   by (auto simp add: expand_fun_eq)
       
    82 
       
    83 section {* Respects predicate *}
       
    84 
       
    85 definition
       
    86   Respects
       
    87 where
       
    88   "Respects R x \<equiv> R x x"
       
    89 
       
    90 lemma in_respects:
       
    91   shows "(x \<in> Respects R) = R x x"
       
    92   unfolding mem_def Respects_def
       
    93   by simp
       
    94 
       
    95 section {* Function map and function relation *}
       
    96 
       
    97 definition
       
    98   fun_map (infixr "--->" 55)
       
    99 where
       
   100 [simp]: "fun_map f g h x = g (h (f x))"
       
   101 
       
   102 definition
       
   103   fun_rel (infixr "===>" 55)
       
   104 where
       
   105 [simp]: "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"
       
   106 
       
   107 
       
   108 lemma fun_map_id:
       
   109   shows "(id ---> id) = id"
       
   110   by (simp add: expand_fun_eq id_def)
       
   111 
       
   112 lemma fun_rel_eq:
       
   113   shows "((op =) ===> (op =)) = (op =)"
       
   114   by (simp add: expand_fun_eq)
       
   115 
       
   116 lemma fun_rel_id:
       
   117   assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
       
   118   shows "(R1 ===> R2) f g"
       
   119   using a by simp
       
   120 
       
   121 lemma fun_rel_id_asm:
       
   122   assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))"
       
   123   shows "A \<longrightarrow> (R1 ===> R2) f g"
       
   124   using a by auto
       
   125 
       
   126 
       
   127 section {* Quotient Predicate *}
       
   128 
       
   129 definition
       
   130   "Quotient E Abs Rep \<equiv>
       
   131      (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. E (Rep a) (Rep a)) \<and>
       
   132      (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
       
   133 
       
   134 lemma Quotient_abs_rep:
       
   135   assumes a: "Quotient E Abs Rep"
       
   136   shows "Abs (Rep a) = a"
       
   137   using a
       
   138   unfolding Quotient_def
       
   139   by simp
       
   140 
       
   141 lemma Quotient_rep_reflp:
       
   142   assumes a: "Quotient E Abs Rep"
       
   143   shows "E (Rep a) (Rep a)"
       
   144   using a
       
   145   unfolding Quotient_def
       
   146   by blast
       
   147 
       
   148 lemma Quotient_rel:
       
   149   assumes a: "Quotient E Abs Rep"
       
   150   shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
       
   151   using a
       
   152   unfolding Quotient_def
       
   153   by blast
       
   154 
       
   155 lemma Quotient_rel_rep:
       
   156   assumes a: "Quotient R Abs Rep"
       
   157   shows "R (Rep a) (Rep b) = (a = b)"
       
   158   using a
       
   159   unfolding Quotient_def
       
   160   by metis
       
   161 
       
   162 lemma Quotient_rep_abs:
       
   163   assumes a: "Quotient R Abs Rep"
       
   164   shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
       
   165   using a unfolding Quotient_def
       
   166   by blast
       
   167 
       
   168 lemma Quotient_rel_abs:
       
   169   assumes a: "Quotient E Abs Rep"
       
   170   shows "E r s \<Longrightarrow> Abs r = Abs s"
       
   171   using a unfolding Quotient_def
       
   172   by blast
       
   173 
       
   174 lemma Quotient_symp:
       
   175   assumes a: "Quotient E Abs Rep"
       
   176   shows "symp E"
       
   177   using a unfolding Quotient_def symp_def
       
   178   by metis
       
   179 
       
   180 lemma Quotient_transp:
       
   181   assumes a: "Quotient E Abs Rep"
       
   182   shows "transp E"
       
   183   using a unfolding Quotient_def transp_def
       
   184   by metis
       
   185 
       
   186 lemma identity_quotient:
       
   187   shows "Quotient (op =) id id"
       
   188   unfolding Quotient_def id_def
       
   189   by blast
       
   190 
       
   191 lemma fun_quotient:
       
   192   assumes q1: "Quotient R1 abs1 rep1"
       
   193   and     q2: "Quotient R2 abs2 rep2"
       
   194   shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
       
   195 proof -
       
   196   have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
       
   197     using q1 q2
       
   198     unfolding Quotient_def
       
   199     unfolding expand_fun_eq
       
   200     by simp
       
   201   moreover
       
   202   have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
       
   203     using q1 q2
       
   204     unfolding Quotient_def
       
   205     by (simp (no_asm)) (metis)
       
   206   moreover
       
   207   have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
       
   208         (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
       
   209     unfolding expand_fun_eq
       
   210     apply(auto)
       
   211     using q1 q2 unfolding Quotient_def
       
   212     apply(metis)
       
   213     using q1 q2 unfolding Quotient_def
       
   214     apply(metis)
       
   215     using q1 q2 unfolding Quotient_def
       
   216     apply(metis)
       
   217     using q1 q2 unfolding Quotient_def
       
   218     apply(metis)
       
   219     done
       
   220   ultimately
       
   221   show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
       
   222     unfolding Quotient_def by blast
       
   223 qed
       
   224 
       
   225 lemma abs_o_rep:
       
   226   assumes a: "Quotient R Abs Rep"
       
   227   shows "Abs o Rep = id"
       
   228   unfolding expand_fun_eq
       
   229   by (simp add: Quotient_abs_rep[OF a])
       
   230 
       
   231 lemma equals_rsp:
       
   232   assumes q: "Quotient R Abs Rep"
       
   233   and     a: "R xa xb" "R ya yb"
       
   234   shows "R xa ya = R xb yb"
       
   235   using a Quotient_symp[OF q] Quotient_transp[OF q]
       
   236   unfolding symp_def transp_def
       
   237   by blast
       
   238 
       
   239 lemma lambda_prs:
       
   240   assumes q1: "Quotient R1 Abs1 Rep1"
       
   241   and     q2: "Quotient R2 Abs2 Rep2"
       
   242   shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
       
   243   unfolding expand_fun_eq
       
   244   using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
       
   245   by simp
       
   246 
       
   247 lemma lambda_prs1:
       
   248   assumes q1: "Quotient R1 Abs1 Rep1"
       
   249   and     q2: "Quotient R2 Abs2 Rep2"
       
   250   shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
       
   251   unfolding expand_fun_eq
       
   252   using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
       
   253   by simp
       
   254 
       
   255 lemma rep_abs_rsp:
       
   256   assumes q: "Quotient R Abs Rep"
       
   257   and     a: "R x1 x2"
       
   258   shows "R x1 (Rep (Abs x2))"
       
   259   using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
       
   260   by metis
       
   261 
       
   262 lemma rep_abs_rsp_left:
       
   263   assumes q: "Quotient R Abs Rep"
       
   264   and     a: "R x1 x2"
       
   265   shows "R (Rep (Abs x1)) x2"
       
   266   using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
       
   267   by metis
       
   268 
       
   269 text{*
       
   270   In the following theorem R1 can be instantiated with anything,
       
   271   but we know some of the types of the Rep and Abs functions;
       
   272   so by solving Quotient assumptions we can get a unique R1 that
       
   273   will be provable; which is why we need to use apply_rsp and
       
   274   not the primed version *}
       
   275 
       
   276 lemma apply_rsp:
       
   277   fixes f g::"'a \<Rightarrow> 'c"
       
   278   assumes q: "Quotient R1 Abs1 Rep1"
       
   279   and     a: "(R1 ===> R2) f g" "R1 x y"
       
   280   shows "R2 (f x) (g y)"
       
   281   using a by simp
       
   282 
       
   283 lemma apply_rsp':
       
   284   assumes a: "(R1 ===> R2) f g" "R1 x y"
       
   285   shows "R2 (f x) (g y)"
       
   286   using a by simp
       
   287 
       
   288 section {* lemmas for regularisation of ball and bex *}
       
   289 
       
   290 lemma ball_reg_eqv:
       
   291   fixes P :: "'a \<Rightarrow> bool"
       
   292   assumes a: "equivp R"
       
   293   shows "Ball (Respects R) P = (All P)"
       
   294   using a
       
   295   unfolding equivp_def
       
   296   by (auto simp add: in_respects)
       
   297 
       
   298 lemma bex_reg_eqv:
       
   299   fixes P :: "'a \<Rightarrow> bool"
       
   300   assumes a: "equivp R"
       
   301   shows "Bex (Respects R) P = (Ex P)"
       
   302   using a
       
   303   unfolding equivp_def
       
   304   by (auto simp add: in_respects)
       
   305 
       
   306 lemma ball_reg_right:
       
   307   assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
       
   308   shows "All P \<longrightarrow> Ball R Q"
       
   309   using a by (metis COMBC_def Collect_def Collect_mem_eq)
       
   310 
       
   311 lemma bex_reg_left:
       
   312   assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
       
   313   shows "Bex R Q \<longrightarrow> Ex P"
       
   314   using a by (metis COMBC_def Collect_def Collect_mem_eq)
       
   315 
       
   316 lemma ball_reg_left:
       
   317   assumes a: "equivp R"
       
   318   shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
       
   319   using a by (metis equivp_reflp in_respects)
       
   320 
       
   321 lemma bex_reg_right:
       
   322   assumes a: "equivp R"
       
   323   shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
       
   324   using a by (metis equivp_reflp in_respects)
       
   325 
       
   326 lemma ball_reg_eqv_range:
       
   327   fixes P::"'a \<Rightarrow> bool"
       
   328   and x::"'a"
       
   329   assumes a: "equivp R2"
       
   330   shows   "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
       
   331   apply(rule iffI)
       
   332   apply(rule allI)
       
   333   apply(drule_tac x="\<lambda>y. f x" in bspec)
       
   334   apply(simp add: in_respects)
       
   335   apply(rule impI)
       
   336   using a equivp_reflp_symp_transp[of "R2"]
       
   337   apply(simp add: reflp_def)
       
   338   apply(simp)
       
   339   apply(simp)
       
   340   done
       
   341 
       
   342 lemma bex_reg_eqv_range:
       
   343   assumes a: "equivp R2"
       
   344   shows   "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
       
   345   apply(auto)
       
   346   apply(rule_tac x="\<lambda>y. f x" in bexI)
       
   347   apply(simp)
       
   348   apply(simp add: Respects_def in_respects)
       
   349   apply(rule impI)
       
   350   using a equivp_reflp_symp_transp[of "R2"]
       
   351   apply(simp add: reflp_def)
       
   352   done
       
   353 
       
   354 (* Next four lemmas are unused *)
       
   355 lemma all_reg:
       
   356   assumes a: "!x :: 'a. (P x --> Q x)"
       
   357   and     b: "All P"
       
   358   shows "All Q"
       
   359   using a b by (metis)
       
   360 
       
   361 lemma ex_reg:
       
   362   assumes a: "!x :: 'a. (P x --> Q x)"
       
   363   and     b: "Ex P"
       
   364   shows "Ex Q"
       
   365   using a b by metis
       
   366 
       
   367 lemma ball_reg:
       
   368   assumes a: "!x :: 'a. (R x --> P x --> Q x)"
       
   369   and     b: "Ball R P"
       
   370   shows "Ball R Q"
       
   371   using a b by (metis COMBC_def Collect_def Collect_mem_eq)
       
   372 
       
   373 lemma bex_reg:
       
   374   assumes a: "!x :: 'a. (R x --> P x --> Q x)"
       
   375   and     b: "Bex R P"
       
   376   shows "Bex R Q"
       
   377   using a b by (metis COMBC_def Collect_def Collect_mem_eq)
       
   378 
       
   379 
       
   380 lemma ball_all_comm:
       
   381   assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)"
       
   382   shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)"
       
   383   using assms by auto
       
   384 
       
   385 lemma bex_ex_comm:
       
   386   assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)"
       
   387   shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)"
       
   388   using assms by auto
       
   389 
       
   390 section {* Bounded abstraction *}
       
   391 
       
   392 definition
       
   393   Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
       
   394 where
       
   395   "x \<in> p \<Longrightarrow> Babs p m x = m x"
       
   396 
       
   397 lemma babs_rsp:
       
   398   assumes q: "Quotient R1 Abs1 Rep1"
       
   399   and     a: "(R1 ===> R2) f g"
       
   400   shows      "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
       
   401   apply (auto simp add: Babs_def in_respects)
       
   402   apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
       
   403   using a apply (simp add: Babs_def)
       
   404   apply (simp add: in_respects)
       
   405   using Quotient_rel[OF q]
       
   406   by metis
       
   407 
       
   408 lemma babs_prs:
       
   409   assumes q1: "Quotient R1 Abs1 Rep1"
       
   410   and     q2: "Quotient R2 Abs2 Rep2"
       
   411   shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f"
       
   412   apply (rule ext)
       
   413   apply (simp)
       
   414   apply (subgoal_tac "Rep1 x \<in> Respects R1")
       
   415   apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
       
   416   apply (simp add: in_respects Quotient_rel_rep[OF q1])
       
   417   done
       
   418 
       
   419 lemma babs_simp:
       
   420   assumes q: "Quotient R1 Abs Rep"
       
   421   shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
       
   422   apply(rule iffI)
       
   423   apply(simp_all only: babs_rsp[OF q])
       
   424   apply(auto simp add: Babs_def)
       
   425   apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
       
   426   apply(metis Babs_def)
       
   427   apply (simp add: in_respects)
       
   428   using Quotient_rel[OF q]
       
   429   by metis
       
   430 
       
   431 (* If a user proves that a particular functional relation
       
   432    is an equivalence this may be useful in regularising *)
       
   433 lemma babs_reg_eqv:
       
   434   shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
       
   435   by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp)
       
   436 
       
   437 
       
   438 (* 3 lemmas needed for proving repabs_inj *)
       
   439 lemma ball_rsp:
       
   440   assumes a: "(R ===> (op =)) f g"
       
   441   shows "Ball (Respects R) f = Ball (Respects R) g"
       
   442   using a by (simp add: Ball_def in_respects)
       
   443 
       
   444 lemma bex_rsp:
       
   445   assumes a: "(R ===> (op =)) f g"
       
   446   shows "(Bex (Respects R) f = Bex (Respects R) g)"
       
   447   using a by (simp add: Bex_def in_respects)
       
   448 
       
   449 lemma bex1_rsp:
       
   450   assumes a: "(R ===> (op =)) f g"
       
   451   shows "Ex1 (\<lambda>x. x \<in> Respects R \<and> f x) = Ex1 (\<lambda>x. x \<in> Respects R \<and> g x)"
       
   452   using a
       
   453   by (simp add: Ex1_def in_respects) auto
       
   454 
       
   455 (* 2 lemmas needed for cleaning of quantifiers *)
       
   456 lemma all_prs:
       
   457   assumes a: "Quotient R absf repf"
       
   458   shows "Ball (Respects R) ((absf ---> id) f) = All f"
       
   459   using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply
       
   460   by metis
       
   461 
       
   462 lemma ex_prs:
       
   463   assumes a: "Quotient R absf repf"
       
   464   shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
       
   465   using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply
       
   466   by metis
       
   467 
       
   468 section {* Bex1_rel quantifier *}
       
   469 
       
   470 definition
       
   471   Bex1_rel :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
       
   472 where
       
   473   "Bex1_rel R P \<longleftrightarrow> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"
       
   474 
       
   475 lemma bex1_rel_aux:
       
   476   "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R x\<rbrakk> \<Longrightarrow> Bex1_rel R y"
       
   477   unfolding Bex1_rel_def
       
   478   apply (erule conjE)+
       
   479   apply (erule bexE)
       
   480   apply rule
       
   481   apply (rule_tac x="xa" in bexI)
       
   482   apply metis
       
   483   apply metis
       
   484   apply rule+
       
   485   apply (erule_tac x="xaa" in ballE)
       
   486   prefer 2
       
   487   apply (metis)
       
   488   apply (erule_tac x="ya" in ballE)
       
   489   prefer 2
       
   490   apply (metis)
       
   491   apply (metis in_respects)
       
   492   done
       
   493 
       
   494 lemma bex1_rel_aux2:
       
   495   "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R y\<rbrakk> \<Longrightarrow> Bex1_rel R x"
       
   496   unfolding Bex1_rel_def
       
   497   apply (erule conjE)+
       
   498   apply (erule bexE)
       
   499   apply rule
       
   500   apply (rule_tac x="xa" in bexI)
       
   501   apply metis
       
   502   apply metis
       
   503   apply rule+
       
   504   apply (erule_tac x="xaa" in ballE)
       
   505   prefer 2
       
   506   apply (metis)
       
   507   apply (erule_tac x="ya" in ballE)
       
   508   prefer 2
       
   509   apply (metis)
       
   510   apply (metis in_respects)
       
   511   done
       
   512 
       
   513 lemma bex1_rel_rsp:
       
   514   assumes a: "Quotient R absf repf"
       
   515   shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)"
       
   516   apply simp
       
   517   apply clarify
       
   518   apply rule
       
   519   apply (simp_all add: bex1_rel_aux bex1_rel_aux2)
       
   520   apply (erule bex1_rel_aux2)
       
   521   apply assumption
       
   522   done
       
   523 
       
   524 
       
   525 lemma ex1_prs:
       
   526   assumes a: "Quotient R absf repf"
       
   527   shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f"
       
   528 apply simp
       
   529 apply (subst Bex1_rel_def)
       
   530 apply (subst Bex_def)
       
   531 apply (subst Ex1_def)
       
   532 apply simp
       
   533 apply rule
       
   534  apply (erule conjE)+
       
   535  apply (erule_tac exE)
       
   536  apply (erule conjE)
       
   537  apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y")
       
   538   apply (rule_tac x="absf x" in exI)
       
   539   apply (simp)
       
   540   apply rule+
       
   541   using a unfolding Quotient_def
       
   542   apply metis
       
   543  apply rule+
       
   544  apply (erule_tac x="x" in ballE)
       
   545   apply (erule_tac x="y" in ballE)
       
   546    apply simp
       
   547   apply (simp add: in_respects)
       
   548  apply (simp add: in_respects)
       
   549 apply (erule_tac exE)
       
   550  apply rule
       
   551  apply (rule_tac x="repf x" in exI)
       
   552  apply (simp only: in_respects)
       
   553   apply rule
       
   554  apply (metis Quotient_rel_rep[OF a])
       
   555 using a unfolding Quotient_def apply (simp)
       
   556 apply rule+
       
   557 using a unfolding Quotient_def in_respects
       
   558 apply metis
       
   559 done
       
   560 
       
   561 lemma bex1_bexeq_reg: "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))"
       
   562   apply (simp add: Ex1_def Bex1_rel_def in_respects)
       
   563   apply clarify
       
   564   apply auto
       
   565   apply (rule bexI)
       
   566   apply assumption
       
   567   apply (simp add: in_respects)
       
   568   apply (simp add: in_respects)
       
   569   apply auto
       
   570   done
       
   571 
       
   572 section {* Various respects and preserve lemmas *}
       
   573 
       
   574 lemma quot_rel_rsp:
       
   575   assumes a: "Quotient R Abs Rep"
       
   576   shows "(R ===> R ===> op =) R R"
       
   577   apply(rule fun_rel_id)+
       
   578   apply(rule equals_rsp[OF a])
       
   579   apply(assumption)+
       
   580   done
       
   581 
       
   582 lemma o_prs:
       
   583   assumes q1: "Quotient R1 Abs1 Rep1"
       
   584   and     q2: "Quotient R2 Abs2 Rep2"
       
   585   and     q3: "Quotient R3 Abs3 Rep3"
       
   586   shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g"
       
   587   using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
       
   588   unfolding o_def expand_fun_eq by simp
       
   589 
       
   590 lemma o_rsp:
       
   591   assumes q1: "Quotient R1 Abs1 Rep1"
       
   592   and     q2: "Quotient R2 Abs2 Rep2"
       
   593   and     q3: "Quotient R3 Abs3 Rep3"
       
   594   and     a1: "(R2 ===> R3) f1 f2"
       
   595   and     a2: "(R1 ===> R2) g1 g2"
       
   596   shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
       
   597   using a1 a2 unfolding o_def expand_fun_eq
       
   598   by (auto)
       
   599 
       
   600 lemma cond_prs:
       
   601   assumes a: "Quotient R absf repf"
       
   602   shows "absf (if a then repf b else repf c) = (if a then b else c)"
       
   603   using a unfolding Quotient_def by auto
       
   604 
       
   605 lemma if_prs:
       
   606   assumes q: "Quotient R Abs Rep"
       
   607   shows "Abs (If a (Rep b) (Rep c)) = If a b c"
       
   608   using Quotient_abs_rep[OF q] by auto
       
   609 
       
   610 (* q not used *)
       
   611 lemma if_rsp:
       
   612   assumes q: "Quotient R Abs Rep"
       
   613   and     a: "a1 = a2" "R b1 b2" "R c1 c2"
       
   614   shows "R (If a1 b1 c1) (If a2 b2 c2)"
       
   615   using a by auto
       
   616 
       
   617 lemma let_prs:
       
   618   assumes q1: "Quotient R1 Abs1 Rep1"
       
   619   and     q2: "Quotient R2 Abs2 Rep2"
       
   620   shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f"
       
   621   using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto
       
   622 
       
   623 lemma let_rsp:
       
   624   assumes q1: "Quotient R1 Abs1 Rep1"
       
   625   and     a1: "(R1 ===> R2) f g"
       
   626   and     a2: "R1 x y"
       
   627   shows "R2 ((Let x f)::'c) ((Let y g)::'c)"
       
   628   using apply_rsp[OF q1 a1] a2 by auto
       
   629 
       
   630 locale quot_type =
       
   631   fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
       
   632   and   Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b"
       
   633   and   Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)"
       
   634   assumes equivp: "equivp R"
       
   635   and     rep_prop: "\<And>y. \<exists>x. Rep y = R x"
       
   636   and     rep_inverse: "\<And>x. Abs (Rep x) = x"
       
   637   and     abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)"
       
   638   and     rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
       
   639 begin
       
   640 
       
   641 definition
       
   642   abs::"'a \<Rightarrow> 'b"
       
   643 where
       
   644   "abs x \<equiv> Abs (R x)"
       
   645 
       
   646 definition
       
   647   rep::"'b \<Rightarrow> 'a"
       
   648 where
       
   649   "rep a = Eps (Rep a)"
       
   650 
       
   651 lemma homeier_lem9:
       
   652   shows "R (Eps (R x)) = R x"
       
   653 proof -
       
   654   have a: "R x x" using equivp by (simp add: equivp_reflp_symp_transp reflp_def)
       
   655   then have "R x (Eps (R x))" by (rule someI)
       
   656   then show "R (Eps (R x)) = R x"
       
   657     using equivp unfolding equivp_def by simp
       
   658 qed
       
   659 
       
   660 theorem homeier_thm10:
       
   661   shows "abs (rep a) = a"
       
   662   unfolding abs_def rep_def
       
   663 proof -
       
   664   from rep_prop
       
   665   obtain x where eq: "Rep a = R x" by auto
       
   666   have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp
       
   667   also have "\<dots> = Abs (R x)" using homeier_lem9 by simp
       
   668   also have "\<dots> = Abs (Rep a)" using eq by simp
       
   669   also have "\<dots> = a" using rep_inverse by simp
       
   670   finally
       
   671   show "Abs (R (Eps (Rep a))) = a" by simp
       
   672 qed
       
   673 
       
   674 lemma homeier_lem7:
       
   675   shows "(R x = R y) = (Abs (R x) = Abs (R y))" (is "?LHS = ?RHS")
       
   676 proof -
       
   677   have "?RHS = (Rep (Abs (R x)) = Rep (Abs (R y)))" by (simp add: rep_inject)
       
   678   also have "\<dots> = ?LHS" by (simp add: abs_inverse)
       
   679   finally show "?LHS = ?RHS" by simp
       
   680 qed
       
   681 
       
   682 theorem homeier_thm11:
       
   683   shows "R r r' = (abs r = abs r')"
       
   684   unfolding abs_def
       
   685   by (simp only: equivp[simplified equivp_def] homeier_lem7)
       
   686 
       
   687 lemma rep_refl:
       
   688   shows "R (rep a) (rep a)"
       
   689   unfolding rep_def
       
   690   by (simp add: equivp[simplified equivp_def])
       
   691 
       
   692 
       
   693 lemma rep_abs_rsp:
       
   694   shows "R f (rep (abs g)) = R f g"
       
   695   and   "R (rep (abs g)) f = R g f"
       
   696   by (simp_all add: homeier_thm10 homeier_thm11)
       
   697 
       
   698 lemma Quotient:
       
   699   shows "Quotient R abs rep"
       
   700   unfolding Quotient_def
       
   701   apply(simp add: homeier_thm10)
       
   702   apply(simp add: rep_refl)
       
   703   apply(subst homeier_thm11[symmetric])
       
   704   apply(simp add: equivp[simplified equivp_def])
       
   705   done
       
   706 
       
   707 end
       
   708 
       
   709 section {* ML setup *}
       
   710 
       
   711 text {* Auxiliary data for the quotient package *}
       
   712 
       
   713 use "quotient_info.ML"
       
   714 
       
   715 declare [[map "fun" = (fun_map, fun_rel)]]
       
   716 
       
   717 lemmas [quot_thm] = fun_quotient
       
   718 lemmas [quot_respect] = quot_rel_rsp
       
   719 lemmas [quot_equiv] = identity_equivp
       
   720 
       
   721 
       
   722 text {* Lemmas about simplifying id's. *}
       
   723 lemmas [id_simps] =
       
   724   id_def[symmetric]
       
   725   fun_map_id
       
   726   id_apply
       
   727   id_o
       
   728   o_id
       
   729   eq_comp_r
       
   730 
       
   731 text {* Translation functions for the lifting process. *}
       
   732 use "quotient_term.ML"
       
   733 
       
   734 
       
   735 text {* Definitions of the quotient types. *}
       
   736 use "quotient_typ.ML"
       
   737 
       
   738 
       
   739 text {* Definitions for quotient constants. *}
       
   740 use "quotient_def.ML"
       
   741 
       
   742 
       
   743 text {*
       
   744   An auxiliary constant for recording some information
       
   745   about the lifted theorem in a tactic.
       
   746 *}
       
   747 definition
       
   748   "Quot_True x \<equiv> True"
       
   749 
       
   750 lemma
       
   751   shows QT_all: "Quot_True (All P) \<Longrightarrow> Quot_True P"
       
   752   and   QT_ex:  "Quot_True (Ex P) \<Longrightarrow> Quot_True P"
       
   753   and   QT_ex1: "Quot_True (Ex1 P) \<Longrightarrow> Quot_True P"
       
   754   and   QT_lam: "Quot_True (\<lambda>x. P x) \<Longrightarrow> (\<And>x. Quot_True (P x))"
       
   755   and   QT_ext: "(\<And>x. Quot_True (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (Quot_True a \<Longrightarrow> f = g)"
       
   756   by (simp_all add: Quot_True_def ext)
       
   757 
       
   758 lemma QT_imp: "Quot_True a \<equiv> Quot_True b"
       
   759   by (simp add: Quot_True_def)
       
   760 
       
   761 
       
   762 text {* Tactics for proving the lifted theorems *}
       
   763 use "quotient_tacs.ML"
       
   764 
       
   765 section {* Methods / Interface *}
       
   766 
       
   767 method_setup lifting =
       
   768   {* Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.lift_tac ctxt thms))) *}
       
   769   {* lifts theorems to quotient types *}
       
   770 
       
   771 method_setup lifting_setup =
       
   772   {* Attrib.thm >> (fn thms => fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.procedure_tac ctxt thms))) *}
       
   773   {* sets up the three goals for the quotient lifting procedure *}
       
   774 
       
   775 method_setup regularize =
       
   776   {* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.regularize_tac ctxt))) *}
       
   777   {* proves the regularization goals from the quotient lifting procedure *}
       
   778 
       
   779 method_setup injection =
       
   780   {* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.all_injection_tac ctxt))) *}
       
   781   {* proves the rep/abs injection goals from the quotient lifting procedure *}
       
   782 
       
   783 method_setup cleaning =
       
   784   {* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.clean_tac ctxt))) *}
       
   785   {* proves the cleaning goals from the quotient lifting procedure *}
       
   786 
       
   787 attribute_setup quot_lifted =
       
   788   {* Scan.succeed Quotient_Tacs.lifted_attrib *}
       
   789   {* lifts theorems to quotient types *}
       
   790 
       
   791 no_notation
       
   792   rel_conj (infixr "OOO" 75) and
       
   793   fun_map (infixr "--->" 55) and
       
   794   fun_rel (infixr "===>" 55)
       
   795 
       
   796 end
       
   797