Attic/Quot/Examples/FSet2.thy
changeset 1976 b611aee9f8e7
parent 1975 b1281a0051ae
parent 1974 13298f4b212b
child 1977 3423051797ad
equal deleted inserted replaced
1975:b1281a0051ae 1976:b611aee9f8e7
     1 theory FSet2
       
     2 imports "../Quotient" "../Quotient_List" List
       
     3 begin
       
     4 
       
     5 inductive
       
     6   list_eq (infix "\<approx>" 50)
       
     7 where
       
     8   "a#b#xs \<approx> b#a#xs"
       
     9 | "[] \<approx> []"
       
    10 | "xs \<approx> ys \<Longrightarrow> ys \<approx> xs"
       
    11 | "a#a#xs \<approx> a#xs"
       
    12 | "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys"
       
    13 | "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3"
       
    14 
       
    15 lemma list_eq_refl:
       
    16   shows "xs \<approx> xs"
       
    17 by (induct xs) (auto intro: list_eq.intros)
       
    18 
       
    19 lemma equivp_list_eq:
       
    20   shows "equivp list_eq"
       
    21 unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
       
    22 by (auto intro: list_eq.intros list_eq_refl)
       
    23 
       
    24 quotient_type
       
    25   'a fset = "'a list" / "list_eq"
       
    26   by (rule equivp_list_eq)
       
    27 
       
    28 quotient_definition
       
    29   fempty ("{||}")
       
    30 where
       
    31   "fempty :: 'a fset"
       
    32 is
       
    33   "[]"
       
    34 
       
    35 quotient_definition
       
    36   "finsert :: 'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
       
    37 is
       
    38   "(op #)"
       
    39 
       
    40 lemma finsert_rsp[quot_respect]:
       
    41   shows "(op = ===> op \<approx> ===> op \<approx>) (op #) (op #)"
       
    42 by (auto intro: list_eq.intros)
       
    43 
       
    44 quotient_definition
       
    45   funion ("_ \<union>f _" [65,66] 65)
       
    46 where
       
    47   "funion :: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
       
    48 is
       
    49   "(op @)"
       
    50 
       
    51 lemma append_rsp_aux1:
       
    52   assumes a : "l2 \<approx> r2 "
       
    53   shows "(h @ l2) \<approx> (h @ r2)"
       
    54 using a
       
    55 apply(induct h)
       
    56 apply(auto intro: list_eq.intros(5))
       
    57 done
       
    58 
       
    59 lemma append_rsp_aux2:
       
    60   assumes a : "l1 \<approx> r1" "l2 \<approx> r2 "
       
    61   shows "(l1 @ l2) \<approx> (r1 @ r2)"
       
    62 using a
       
    63 apply(induct arbitrary: l2 r2)
       
    64 apply(simp_all)
       
    65 apply(blast intro: list_eq.intros append_rsp_aux1)+
       
    66 done
       
    67 
       
    68 lemma append_rsp[quot_respect]:
       
    69   shows "(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
       
    70   by (auto simp add: append_rsp_aux2)
       
    71 
       
    72 
       
    73 quotient_definition
       
    74   fmem ("_ \<in>f _" [50, 51] 50)
       
    75 where
       
    76   "fmem :: 'a \<Rightarrow> 'a fset \<Rightarrow> bool"
       
    77 is
       
    78   "(op mem)"
       
    79 
       
    80 lemma memb_rsp_aux:
       
    81   assumes a: "x \<approx> y"
       
    82   shows "(z mem x) = (z mem y)"
       
    83   using a by induct auto
       
    84 
       
    85 lemma memb_rsp[quot_respect]:
       
    86   shows "(op = ===> (op \<approx> ===> op =)) (op mem) (op mem)"
       
    87   by (simp add: memb_rsp_aux)
       
    88 
       
    89 definition
       
    90   fnot_mem :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" ("_ \<notin>f _" [50, 51] 50)
       
    91 where
       
    92   "x \<notin>f S \<equiv> \<not>(x \<in>f S)"
       
    93 
       
    94 definition
       
    95   "inter_list" :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
       
    96 where
       
    97   "inter_list X Y \<equiv> [x \<leftarrow> X. x\<in>set Y]"
       
    98 
       
    99 quotient_definition
       
   100   finter ("_ \<inter>f _" [70, 71] 70)
       
   101 where
       
   102   "finter::'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
       
   103 is
       
   104   "inter_list"
       
   105 
       
   106 no_syntax
       
   107   "@Finset"     :: "args => 'a fset"                       ("{|(_)|}")
       
   108 syntax
       
   109   "@Finfset"     :: "args => 'a fset"                       ("{|(_)|}")
       
   110 translations
       
   111   "{|x, xs|}"     == "CONST finsert x {|xs|}"
       
   112   "{|x|}"         == "CONST finsert x {||}"
       
   113 
       
   114 
       
   115 subsection {* Empty sets *}
       
   116 
       
   117 lemma test:
       
   118   shows "\<not>(x # xs \<approx> [])"
       
   119 sorry
       
   120 
       
   121 lemma finsert_not_empty[simp]: 
       
   122   shows "finsert x S \<noteq> {||}"
       
   123   by (lifting test)
       
   124 
       
   125 
       
   126 
       
   127 
       
   128 end;