Attic/Unused.thy
changeset 2871 b58073719b06
parent 1024 b3deb964ad26
equal deleted inserted replaced
2870:b9a16d627bfd 2871:b58073719b06
     1 (*notation ( output) "prop" ("#_" [1000] 1000) *)
     1 (*notation ( output) "prop" ("#_" [1000] 1000) *)
     2 notation ( output) "Trueprop" ("#_" [1000] 1000)
     2 notation ( output) "Trueprop" ("#_" [1000] 1000)
     3 
       
     4 function(sequential)
       
     5     akind :: "kind \<Rightarrow> kind \<Rightarrow> bool" ("_ \<approx>ki _" [100, 100] 100)
       
     6 and aty   :: "ty \<Rightarrow> ty \<Rightarrow> bool"     ("_ \<approx>ty _" [100, 100] 100)
       
     7 and atrm  :: "trm \<Rightarrow> trm \<Rightarrow> bool"   ("_ \<approx>tr _" [100, 100] 100)
       
     8 where
       
     9   a1: "(Type) \<approx>ki (Type) = True"
       
    10 | a2: "(KPi A x K) \<approx>ki (KPi A' x' K') = (A \<approx>ty A' \<and> (\<exists>pi. (rfv_kind K - {atom x} = rfv_kind K' - {atom x'} \<and> (rfv_kind K - {atom x})\<sharp>* pi \<and> (pi \<bullet> K) \<approx>ki K' \<and> (pi \<bullet> x) = x')))"
       
    11 | "_ \<approx>ki _ = False"
       
    12 | a3: "(TConst i) \<approx>ty (TConst j) = (i = j)"
       
    13 | a4: "(TApp A M) \<approx>ty (TApp A' M') = (A \<approx>ty A' \<and> M \<approx>tr M')"
       
    14 | a5: "(TPi A x B) \<approx>ty (TPi A' x' B') = ((A \<approx>ty A') \<and> (\<exists>pi. rfv_ty B - {atom x} = rfv_ty B' - {atom x'} \<and> (rfv_ty B - {atom x})\<sharp>* pi \<and> (pi \<bullet> B) \<approx>ty B' \<and> (pi \<bullet> x) = x'))"
       
    15 | "_ \<approx>ty _ = False"
       
    16 | a6: "(Const i) \<approx>tr (Const j) = (i = j)"
       
    17 | a7: "(Var x) \<approx>tr (Var y) = (x = y)"
       
    18 | a8: "(App M N) \<approx>tr (App M' N') = (M \<approx>tr M' \<and> N \<approx>tr N')"
       
    19 | a9: "(Lam A x M) \<approx>tr (Lam A' x' M') = (A \<approx>ty A' \<and> (\<exists>pi. rfv_trm M - {atom x} = rfv_trm M' - {atom x'} \<and> (rfv_trm M - {atom x})\<sharp>* pi \<and> (pi \<bullet> M) \<approx>tr M' \<and> (pi \<bullet> x) = x'))"
       
    20 | "_ \<approx>tr _ = False"
       
    21 apply (pat_completeness)
       
    22 apply simp_all
       
    23 done
       
    24 termination
       
    25 by (size_change)
       
    26 
       
    27 
       
    28 
       
    29 lemma regularize_to_injection:
       
    30   shows "(QUOT_TRUE l \<Longrightarrow> y) \<Longrightarrow> (l = r) \<longrightarrow> y"
       
    31   by(auto simp add: QUOT_TRUE_def)
       
    32 
     3 
    33 syntax
     4 syntax
    34   "Bex1_rel" :: "id \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" ("(3\<exists>!!_\<in>_./ _)" [0, 0, 10] 10)
     5   "Bex1_rel" :: "id \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" ("(3\<exists>!!_\<in>_./ _)" [0, 0, 10] 10)
    35 translations
     6 translations
    36   "\<exists>!!x\<in>A. P"  == "Bex1_rel A (%x. P)"
     7   "\<exists>!!x\<in>A. P"  == "Bex1_rel A (%x. P)"
    37 
       
    38 
       
    39 (* Atomize infrastructure *)
       
    40 (* FIXME/TODO: is this really needed? *)
       
    41 (*
       
    42 lemma atomize_eqv:
       
    43   shows "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)"
       
    44 proof
       
    45   assume "A \<equiv> B"
       
    46   then show "Trueprop A \<equiv> Trueprop B" by unfold
       
    47 next
       
    48   assume *: "Trueprop A \<equiv> Trueprop B"
       
    49   have "A = B"
       
    50   proof (cases A)
       
    51     case True
       
    52     have "A" by fact
       
    53     then show "A = B" using * by simp
       
    54   next
       
    55     case False
       
    56     have "\<not>A" by fact
       
    57     then show "A = B" using * by auto
       
    58   qed
       
    59   then show "A \<equiv> B" by (rule eq_reflection)
       
    60 qed
       
    61 *)
       
    62 
       
    63 
       
    64 ML {*
       
    65   fun dest_cbinop t =
       
    66     let
       
    67       val (t2, rhs) = Thm.dest_comb t;
       
    68       val (bop, lhs) = Thm.dest_comb t2;
       
    69     in
       
    70       (bop, (lhs, rhs))
       
    71     end
       
    72 *}
       
    73 
       
    74 ML {*
       
    75   fun dest_ceq t =
       
    76     let
       
    77       val (bop, pair) = dest_cbinop t;
       
    78       val (bop_s, _) = Term.dest_Const (Thm.term_of bop);
       
    79     in
       
    80       if bop_s = "op =" then pair else (raise CTERM ("Not an equality", [t]))
       
    81     end
       
    82 *}
       
    83 
       
    84 ML {*
       
    85   fun split_binop_conv t =
       
    86     let
       
    87       val (lhs, rhs) = dest_ceq t;
       
    88       val (bop, _) = dest_cbinop lhs;
       
    89       val [clT, cr2] = bop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
       
    90       val [cmT, crT] = Thm.dest_ctyp cr2;
       
    91     in
       
    92       Drule.instantiate' [SOME clT, SOME cmT, SOME crT] [NONE, NONE, NONE, NONE, SOME bop] @{thm arg_cong2}
       
    93     end
       
    94 *}
       
    95 
       
    96 
       
    97 ML {*
       
    98   fun split_arg_conv t =
       
    99     let
       
   100       val (lhs, rhs) = dest_ceq t;
       
   101       val (lop, larg) = Thm.dest_comb lhs;
       
   102       val [caT, crT] = lop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
       
   103     in
       
   104       Drule.instantiate' [SOME caT, SOME crT] [NONE, NONE, SOME lop] @{thm arg_cong}
       
   105     end
       
   106 *}
       
   107 
       
   108 ML {*
       
   109   fun split_binop_tac n thm =
       
   110     let
       
   111       val concl = Thm.cprem_of thm n;
       
   112       val (_, cconcl) = Thm.dest_comb concl;
       
   113       val rewr = split_binop_conv cconcl;
       
   114     in
       
   115       rtac rewr n thm
       
   116     end
       
   117       handle CTERM _ => Seq.empty
       
   118 *}
       
   119 
       
   120 
       
   121 ML {*
       
   122   fun split_arg_tac n thm =
       
   123     let
       
   124       val concl = Thm.cprem_of thm n;
       
   125       val (_, cconcl) = Thm.dest_comb concl;
       
   126       val rewr = split_arg_conv cconcl;
       
   127     in
       
   128       rtac rewr n thm
       
   129     end
       
   130       handle CTERM _ => Seq.empty
       
   131 *}
       
   132 
       
   133 
       
   134 lemma trueprop_cong:
       
   135   shows "(a \<equiv> b) \<Longrightarrow> (Trueprop a \<equiv> Trueprop b)"
       
   136   by auto
       
   137 
       
   138 lemma list_induct_hol4:
       
   139   fixes P :: "'a list \<Rightarrow> bool"
       
   140   assumes a: "((P []) \<and> (\<forall>t. (P t) \<longrightarrow> (\<forall>h. (P (h # t)))))"
       
   141   shows "\<forall>l. (P l)"
       
   142   using a
       
   143   apply (rule_tac allI)
       
   144   apply (induct_tac "l")
       
   145   apply (simp)
       
   146   apply (metis)
       
   147   done
       
   148 
       
   149 ML {*
       
   150 val no_vars = Thm.rule_attribute (fn context => fn th =>
       
   151   let
       
   152     val ctxt = Variable.set_body false (Context.proof_of context);
       
   153     val ((_, [th']), _) = Variable.import true [th] ctxt;
       
   154   in th' end);
       
   155 *}
       
   156 
       
   157 (*lemma equality_twice:
       
   158   "a = c \<Longrightarrow> b = d \<Longrightarrow> (a = b \<longrightarrow> c = d)"
       
   159 by auto*)
       
   160 
       
   161 
     8 
   162 (*interpretation code *)
     9 (*interpretation code *)
   163 (*val bindd = ((Binding.make ("", Position.none)), ([]: Attrib.src list))
    10 (*val bindd = ((Binding.make ("", Position.none)), ([]: Attrib.src list))
   164   val ((_, [eqn1pre]), lthy5) = Variable.import true [ABS_def] lthy4;
    11   val ((_, [eqn1pre]), lthy5) = Variable.import true [ABS_def] lthy4;
   165   val eqn1i = Thm.prop_of (symmetric eqn1pre)
    12   val eqn1i = Thm.prop_of (symmetric eqn1pre)