Nominal/Ex/Let.thy
changeset 2854 b577f06e0804
parent 2842 43bb260ef290
child 2872 eda5b21622f3
equal deleted inserted replaced
2852:f884760ac6e2 2854:b577f06e0804
    88         (ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b"
    88         (ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b"
    89   by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) auto
    89   by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) auto
    90 
    90 
    91 lemmas alpha_bn_inducts = alpha_bn_inducts_raw[quot_lifted]
    91 lemmas alpha_bn_inducts = alpha_bn_inducts_raw[quot_lifted]
    92 
    92 
       
    93 lemma Abs_lst_fcb:
       
    94   fixes xs ys :: "'a :: fs"
       
    95     and S T :: "'b :: fs"
       
    96   assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"
       
    97     and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"
       
    98     and f2: "\<And>x. supp T - set (ba xs) = supp S - set (ba ys) \<Longrightarrow> x \<in> set (ba ys) \<Longrightarrow> x \<sharp> f xs T"
       
    99     and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> set (ba xs) \<union> set (ba ys) \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
       
   100   shows "f xs T = f ys S"
       
   101   using e apply -
       
   102   apply(subst (asm) Abs_eq_iff2)
       
   103   apply(simp add: alphas)
       
   104   apply(elim exE conjE)
       
   105   apply(rule trans)
       
   106   apply(rule_tac p="p" in supp_perm_eq[symmetric])
       
   107   apply(rule fresh_star_supp_conv)
       
   108   apply(drule fresh_star_perm_set_conv)
       
   109   apply(rule finite_Diff)
       
   110   apply(rule finite_supp)
       
   111   apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")
       
   112   apply(metis Un_absorb2 fresh_star_Un)
       
   113   apply(subst fresh_star_Un)
       
   114   apply(rule conjI)
       
   115   apply(simp add: fresh_star_def f1)
       
   116   apply(simp add: fresh_star_def f2)
       
   117   apply(simp add: eqv)
       
   118   done
       
   119 
       
   120 lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
       
   121   by (simp add: permute_pure)
       
   122 
       
   123 (* TODO: should be provided by nominal *)
       
   124 lemma [eqvt]: "p \<bullet> bn a = bn (p \<bullet> a)"
       
   125   by descending (rule eqvts)
       
   126 
       
   127 (* PROBLEM: the proof needs induction on alpha_bn inside which is not possible... *)
       
   128 nominal_primrec
       
   129     height_trm :: "trm \<Rightarrow> nat"
       
   130 and height_assn :: "assn \<Rightarrow> nat"
       
   131 where
       
   132   "height_trm (Var x) = 1"
       
   133 | "height_trm (App l r) = max (height_trm l) (height_trm r)"
       
   134 | "height_trm (Lam v b) = 1 + (height_trm b)"
       
   135 | "height_trm (Let as b) = max (height_assn as) (height_trm b)"
       
   136 | "height_assn ANil = 0"
       
   137 | "height_assn (ACons v t as) = max (height_trm t) (height_assn as)"
       
   138   apply (simp only: eqvt_def height_trm_height_assn_graph_def)
       
   139   apply (rule, perm_simp, rule, rule TrueI)
       
   140   apply (case_tac x)
       
   141   apply (case_tac a rule: trm_assn.exhaust(1))
       
   142   apply (auto)[4]
       
   143   apply (drule_tac x="assn" in meta_spec)
       
   144   apply (drule_tac x="trm" in meta_spec)
       
   145   apply (simp add: alpha_bn_refl)
       
   146   apply (case_tac b rule: trm_assn.exhaust(2))
       
   147   apply (auto)
       
   148   apply (erule Abs_lst1_fcb)
       
   149   apply (simp_all add: pure_fresh)
       
   150   apply (simp add: eqvt_at_def)
       
   151   apply (erule Abs_lst_fcb)
       
   152   apply (simp_all add: pure_fresh)
       
   153   apply (simp_all add: eqvt_at_def eqvts)
       
   154   oops
       
   155 
    93 nominal_primrec
   156 nominal_primrec
    94     subst  :: "name \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"
   157     subst  :: "name \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"
    95 and substa :: "name \<Rightarrow> trm \<Rightarrow> assn \<Rightarrow> assn"
   158 and substa :: "name \<Rightarrow> trm \<Rightarrow> assn \<Rightarrow> assn"
    96 where
   159 where
    97   "subst s t (Var x) = (if (s = x) then t else (Var x))"
   160   "subst s t (Var x) = (if (s = x) then t else (Var x))"
   116   apply blast
   179   apply blast
   117   apply blast
   180   apply blast
   118   apply auto
   181   apply auto
   119   apply (simp_all add: meta_eq_to_obj_eq[OF subst_def, symmetric, unfolded fun_eq_iff])
   182   apply (simp_all add: meta_eq_to_obj_eq[OF subst_def, symmetric, unfolded fun_eq_iff])
   120   apply (simp_all add: meta_eq_to_obj_eq[OF substa_def, symmetric, unfolded fun_eq_iff])
   183   apply (simp_all add: meta_eq_to_obj_eq[OF substa_def, symmetric, unfolded fun_eq_iff])
       
   184   (*apply (erule Abs_lst1_fcb)*)
   121   prefer 3
   185   prefer 3
   122   apply (erule alpha_bn_inducts)
   186   apply (erule alpha_bn_inducts)
   123   apply (simp add: alpha_bn_refl)
   187   apply (simp add: alpha_bn_refl)
   124   (* Needs an invariant *)
   188   (* Needs an invariant *)
   125   oops
   189   oops