Nominal/Ex/LetRecB.thy
changeset 2916 b55098314f83
parent 2915 b4bf3ff4bc91
child 2917 6ad2f1c296a7
equal deleted inserted replaced
2915:b4bf3ff4bc91 2916:b55098314f83
    30 
    30 
    31 lemma Abs_lst_fcb2:
    31 lemma Abs_lst_fcb2:
    32   fixes as bs :: "atom list"
    32   fixes as bs :: "atom list"
    33     and x y :: "'b :: fs"
    33     and x y :: "'b :: fs"
    34     and c::"'c::fs"
    34     and c::"'c::fs"
    35   assumes eq: "[as]lst. x = [bs]lst. y"
    35   assumes eq: "[bf as]lst. x = [bf bs]lst. y"
    36   and fcb1: "(set as) \<sharp>* f as x c"
    36   and fcb1: "(set (bf as)) \<sharp>* f as x c"
    37   and fresh1: "set as \<sharp>* c"
    37   and fresh1: "set (bf as) \<sharp>* c"
    38   and fresh2: "set bs \<sharp>* c"
    38   and fresh2: "set (bf bs) \<sharp>* c"
    39   and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
    39   and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
    40   and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
    40   and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
       
    41   and props: "eqvt bf" "inj bf"
    41   shows "f as x c = f bs y c"
    42   shows "f as x c = f bs y c"
    42 proof -
    43 proof -
    43   have "supp (as, x, c) supports (f as x c)"
    44   have "supp (as, x, c) supports (f as x c)"
    44     unfolding  supports_def fresh_def[symmetric]
    45     unfolding  supports_def fresh_def[symmetric]
    45     by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
    46     by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
    49     unfolding  supports_def fresh_def[symmetric]
    50     unfolding  supports_def fresh_def[symmetric]
    50     by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
    51     by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
    51   then have fin2: "finite (supp (f bs y c))"
    52   then have fin2: "finite (supp (f bs y c))"
    52     by (auto intro: supports_finite simp add: finite_supp)
    53     by (auto intro: supports_finite simp add: finite_supp)
    53   obtain q::"perm" where 
    54   obtain q::"perm" where 
    54     fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and 
    55     fr1: "(q \<bullet> (set (bf as))) \<sharp>* (x, c, f as x c, f bs y c)" and 
    55     fr2: "supp q \<sharp>* Abs_lst as x" and 
    56     fr2: "supp q \<sharp>* ([bf as]lst. x)" and 
    56     inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"
    57     inc: "supp q \<subseteq> (set (bf as)) \<union> q \<bullet> (set (bf as))"
    57     using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"]  
    58     using at_set_avoiding3[where xs="set (bf as)" and c="(x, c, f as x c, f bs y c)" and x="[bf as]lst. x"]  
    58       fin1 fin2
    59       fin1 fin2
    59     by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
    60     by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
    60   have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp
    61   have "[q \<bullet> (bf as)]lst. (q \<bullet> x) = q \<bullet> ([bf as]lst. x)" by simp
    61   also have "\<dots> = Abs_lst as x"
    62   also have "\<dots> = [bf as]lst. x"
    62     by (simp only: fr2 perm_supp_eq)
    63     by (simp only: fr2 perm_supp_eq)
    63   finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp
    64   finally have "[q \<bullet> (bf as)]lst. (q \<bullet> x) = [bf bs]lst. y" using eq by simp
    64   then obtain r::perm where 
    65   then obtain r::perm where 
    65     qq1: "q \<bullet> x = r \<bullet> y" and 
    66     qq1: "q \<bullet> x = r \<bullet> y" and 
    66     qq2: "q \<bullet> as = r \<bullet> bs" and 
    67     qq2: "q \<bullet> (bf as) = r \<bullet> (bf bs)" and 
    67     qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs"
    68     qq3: "supp r \<subseteq> (q \<bullet> (set (bf as))) \<union> set (bf bs)"
    68     apply(drule_tac sym)
    69     apply(drule_tac sym)
    69     apply(simp only: Abs_eq_iff2 alphas)
    70     apply(simp only: Abs_eq_iff2 alphas)
    70     apply(erule exE)
    71     apply(erule exE)
    71     apply(erule conjE)+
    72     apply(erule conjE)+
    72     apply(drule_tac x="p" in meta_spec)
    73     apply(drule_tac x="p" in meta_spec)
    73     apply(simp add: set_eqvt)
    74     apply(simp add: set_eqvt)
    74     apply(blast)
    75     apply(blast)
    75     done
    76     done
    76   have "(set as) \<sharp>* f as x c" by (rule fcb1)
    77   have qq4: "q \<bullet> as = r \<bullet> bs" using qq2 props unfolding eqvt_def inj_on_def
    77   then have "q \<bullet> ((set as) \<sharp>* f as x c)"
    78     apply(perm_simp)
       
    79     apply(simp)
       
    80     done
       
    81   have "(set (bf as)) \<sharp>* f as x c" by (rule fcb1)
       
    82   then have "q \<bullet> ((set (bf as)) \<sharp>* f as x c)"
    78     by (simp add: permute_bool_def)
    83     by (simp add: permute_bool_def)
    79   then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
    84   then have "set (q \<bullet> (bf as)) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
    80     apply(simp add: fresh_star_eqvt set_eqvt)
    85     apply(simp add: fresh_star_eqvt set_eqvt)
    81     apply(subst (asm) perm1)
    86     apply(subst (asm) perm1)
    82     using inc fresh1 fr1
    87     using inc fresh1 fr1
    83     apply(auto simp add: fresh_star_def fresh_Pair)
    88     apply(auto simp add: fresh_star_def fresh_Pair)
    84     done
    89     done
    85   then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
    90   then have "set (r \<bullet> (bf bs)) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 qq4
    86   then have "r \<bullet> ((set bs) \<sharp>* f bs y c)"
    91     by simp
       
    92   then have "r \<bullet> ((set (bf bs)) \<sharp>* f bs y c)"
    87     apply(simp add: fresh_star_eqvt set_eqvt)
    93     apply(simp add: fresh_star_eqvt set_eqvt)
    88     apply(subst (asm) perm2[symmetric])
    94     apply(subst (asm) perm2[symmetric])
    89     using qq3 fresh2 fr1
    95     using qq3 fresh2 fr1
    90     apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
    96     apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
    91     done
    97     done
    92   then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def)
    98   then have fcb2: "(set (bf bs)) \<sharp>* f bs y c" by (simp add: permute_bool_def)
    93   have "f as x c = q \<bullet> (f as x c)"
    99   have "f as x c = q \<bullet> (f as x c)"
    94     apply(rule perm_supp_eq[symmetric])
   100     apply(rule perm_supp_eq[symmetric])
    95     using inc fcb1 fr1 by (auto simp add: fresh_star_def)
   101     using inc fcb1 fr1 by (auto simp add: fresh_star_def)
    96   also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c" 
   102   also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c" 
    97     apply(rule perm1)
   103     apply(rule perm1)
    98     using inc fresh1 fr1 by (auto simp add: fresh_star_def)
   104     using inc fresh1 fr1 by (auto simp add: fresh_star_def)
    99   also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
   105   also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq4 by simp
   100   also have "\<dots> = r \<bullet> (f bs y c)"
   106   also have "\<dots> = r \<bullet> (f bs y c)"
   101     apply(rule perm2[symmetric])
   107     apply(rule perm2[symmetric])
   102     using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
   108     using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
   103   also have "... = f bs y c"
   109   also have "... = f bs y c"
   104     apply(rule perm_supp_eq)
   110     apply(rule perm_supp_eq)
   131   apply(simp_all)
   137   apply(simp_all)
   132   apply (erule_tac c="()" in Abs_lst_fcb2)
   138   apply (erule_tac c="()" in Abs_lst_fcb2)
   133   apply (simp_all add: fresh_star_def pure_fresh)[3]
   139   apply (simp_all add: fresh_star_def pure_fresh)[3]
   134   apply (simp add: eqvt_at_def)
   140   apply (simp add: eqvt_at_def)
   135   apply (simp add: eqvt_at_def)
   141   apply (simp add: eqvt_at_def)
       
   142   apply(simp add: eqvt_def)
       
   143   apply(perm_simp)
       
   144   apply(simp)
       
   145   apply(simp add: inj_on_def)
   136   --"HERE"
   146   --"HERE"
   137   thm  Abs_lst_fcb2
       
   138   apply(rule Abs_lst_fcb2)
       
   139      --" does not fit the assumption "
       
   140 
       
   141   apply (drule_tac c="()" in Abs_lst_fcb2)
   147   apply (drule_tac c="()" in Abs_lst_fcb2)
   142   prefer 6
   148   prefer 8
   143   apply(assumption)
   149   apply(assumption)
   144   apply (drule_tac c="()" in Abs_lst_fcb2)
   150   apply (drule_tac c="()" in Abs_lst_fcb2)
   145   apply (simp add: Abs_eq_iff2)
   151   apply (simp add: Abs_eq_iff2)
   146   apply (simp add: alphas)
   152   apply (simp add: alphas)
   147   apply clarify
   153   apply clarify