Nominal/Nominal2_Eqvt.thy
changeset 2658 b4472ebd7fad
parent 2651 4aa72a88b2c1
child 2663 54aade5d0fe6
equal deleted inserted replaced
2657:1ea9c059fc0f 2658:b4472ebd7fad
   193   fixes A :: "'a::pt set"
   193   fixes A :: "'a::pt set"
   194   shows "p \<bullet> (- A) = - (p \<bullet> A)"
   194   shows "p \<bullet> (- A) = - (p \<bullet> A)"
   195   unfolding Compl_eq_Diff_UNIV
   195   unfolding Compl_eq_Diff_UNIV
   196   by (perm_simp) (rule refl)
   196   by (perm_simp) (rule refl)
   197 
   197 
       
   198 lemma subset_eqvt[eqvt]:
       
   199   shows "p \<bullet> (S \<subseteq> T) \<longleftrightarrow> (p \<bullet> S) \<subseteq> (p \<bullet> T)"
       
   200   unfolding subset_eq
       
   201   by (perm_simp) (rule refl)
       
   202 
       
   203 lemma psubset_eqvt[eqvt]:
       
   204   shows "p \<bullet> (S \<subset> T) \<longleftrightarrow> (p \<bullet> S) \<subset> (p \<bullet> T)"
       
   205   unfolding psubset_eq
       
   206   by (perm_simp) (rule refl)
       
   207 
   198 lemma image_eqvt:
   208 lemma image_eqvt:
   199   shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)"
   209   shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)"
   200   unfolding permute_set_eq_image
   210   unfolding permute_set_eq_image
   201   unfolding permute_fun_def [where f=f]
   211   unfolding permute_fun_def [where f=f]
   202   by (simp add: image_image)
   212   by (simp add: image_image)