Nominal/Nominal2_Base.thy
changeset 3026 b037ae269f50
parent 2987 27aab7a105eb
child 3050 7519ebb41145
child 3122 5a8ed4dad895
equal deleted inserted replaced
3025:204a488c71c6 3026:b037ae269f50
   951 lemma Inter_eqvt [eqvt]:
   951 lemma Inter_eqvt [eqvt]:
   952   shows "p \<bullet> (\<Inter> S) = \<Inter> (p \<bullet> S)"
   952   shows "p \<bullet> (\<Inter> S) = \<Inter> (p \<bullet> S)"
   953   unfolding Inter_eq 
   953   unfolding Inter_eq 
   954   by (perm_simp) (rule refl)
   954   by (perm_simp) (rule refl)
   955 
   955 
   956 
       
   957 (* FIXME: eqvt attribute *)
   956 (* FIXME: eqvt attribute *)
   958 lemma Sigma_eqvt:
   957 lemma Sigma_eqvt:
   959   shows "(p \<bullet> (X \<times> Y)) = (p \<bullet> X) \<times> (p \<bullet> Y)"
   958   shows "(p \<bullet> (X \<times> Y)) = (p \<bullet> X) \<times> (p \<bullet> Y)"
   960 unfolding Sigma_def
   959 unfolding Sigma_def
   961 unfolding UNION_eq_Union_image
   960 unfolding SUP_def
   962 by (perm_simp) (rule refl)
   961 by (perm_simp) (rule refl)
   963 
   962 
   964 text {* 
   963 text {* 
   965   In order to prove that lfp is equivariant we need two
   964   In order to prove that lfp is equivariant we need two
   966   auxiliary classes which specify that (op <=) and
   965   auxiliary classes which specify that (op <=) and