Tutorial/Tutorial4.thy
changeset 2691 abb6c3ac2df2
parent 2689 ddc05a611005
child 2693 2abc8cb46a5c
child 2705 67451725fb41
equal deleted inserted replaced
2690:f325eefe803e 2691:abb6c3ac2df2
       
     1 
     1 theory Tutorial4
     2 theory Tutorial4
     2 imports Tutorial1 Tutorial2
     3 imports Tutorial1 Tutorial2 Tutorial3
     3 begin
     4 begin
     4 
     5 
     5 section {* The CBV Reduction Relation (Small-Step Semantics) *}
     6 section {* The CBV Reduction Relation (Small-Step Semantics) *}
     6 
     7 
     7 text {*
     8 text {*
   160 
   161 
   161 lemma eval_val:
   162 lemma eval_val:
   162   assumes a: "val t"
   163   assumes a: "val t"
   163   shows "t \<Down> t"
   164   shows "t \<Down> t"
   164 using a by (induct) (auto)
   165 using a by (induct) (auto)
       
   166 
   165 
   167 
   166 lemma e_App_elim:
   168 lemma e_App_elim:
   167   assumes a: "App t1 t2 \<Down> v"
   169   assumes a: "App t1 t2 \<Down> v"
   168   obtains x t v' where "t1 \<Down> Lam [x].t" "t2 \<Down> v'" "t[x::=v'] \<Down> v"
   170   obtains x t v' where "t1 \<Down> Lam [x].t" "t2 \<Down> v'" "t[x::=v'] \<Down> v"
   169 using a by (cases) (auto simp add: lam.eq_iff lam.distinct) 
   171 using a by (cases) (auto simp add: lam.eq_iff lam.distinct) 
   232 proof -
   234 proof -
   233   have "t1 \<longrightarrow>cbv* t2" using a machines_implies_cbvs by simp
   235   have "t1 \<longrightarrow>cbv* t2" using a machines_implies_cbvs by simp
   234   then show "t1 \<Down> t2" using b cbvs_implies_eval by simp
   236   then show "t1 \<Down> t2" using b cbvs_implies_eval by simp
   235 qed
   237 qed
   236 
   238 
   237 lemma valid_elim:
   239 
   238   assumes a: "valid ((x, T) # \<Gamma>)"
   240 
   239   shows "atom x \<sharp> \<Gamma> \<and> valid \<Gamma>"
       
   240 using a by (cases) (auto)
       
   241 
       
   242 lemma valid_insert:
       
   243   assumes a: "valid (\<Delta> @ [(x, T)] @ \<Gamma>)"
       
   244   shows "valid (\<Delta> @ \<Gamma>)" 
       
   245 using a
       
   246 by (induct \<Delta>)
       
   247    (auto simp add: fresh_append fresh_Cons dest!: valid_elim)
       
   248 
       
   249 lemma fresh_list: 
       
   250   shows "atom y \<sharp> xs = (\<forall>x \<in> set xs. atom y \<sharp> x)"
       
   251 by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
       
   252 
       
   253 lemma context_unique:
       
   254   assumes a1: "valid \<Gamma>"
       
   255   and     a2: "(x, T) \<in> set \<Gamma>"
       
   256   and     a3: "(x, U) \<in> set \<Gamma>"
       
   257   shows "T = U" 
       
   258 using a1 a2 a3
       
   259 by (induct) (auto simp add: fresh_list fresh_Pair fresh_at_base)
       
   260 
       
   261 lemma type_substitution_aux:
       
   262   assumes a: "\<Delta> @ [(x, T')] @ \<Gamma> \<turnstile> e : T"
       
   263   and     b: "\<Gamma> \<turnstile> e' : T'"
       
   264   shows "\<Delta> @ \<Gamma> \<turnstile> e[x ::= e'] : T" 
       
   265 using a b 
       
   266 proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, T')] @ \<Gamma>" e T avoiding: x e' \<Delta> rule: typing.strong_induct)
       
   267   case (t_Var y T x e' \<Delta>)
       
   268   have a1: "valid (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact
       
   269   have a2: "(y,T) \<in> set (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact 
       
   270   have a3: "\<Gamma> \<turnstile> e' : T'" by fact
       
   271   from a1 have a4: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert)
       
   272   { assume eq: "x = y"
       
   273     from a1 a2 have "T = T'" using eq by (auto intro: context_unique)
       
   274     with a3 have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using eq a4 by (auto intro: weakening)
       
   275   }
       
   276   moreover
       
   277   { assume ineq: "x \<noteq> y"
       
   278     from a2 have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" using ineq by simp
       
   279     then have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using ineq a4 by auto
       
   280   }
       
   281   ultimately show "\<Delta> @ \<Gamma> \<turnstile> Var y[x::=e'] : T" by blast
       
   282 qed (force simp add: fresh_append fresh_Cons)+
       
   283 
       
   284 corollary type_substitution:
       
   285   assumes a: "(x, T') # \<Gamma> \<turnstile> e : T"
       
   286   and     b: "\<Gamma> \<turnstile> e' : T'"
       
   287   shows "\<Gamma> \<turnstile> e[x ::= e'] : T"
       
   288 using a b type_substitution_aux[where \<Delta>="[]"]
       
   289 by auto
       
   290 
       
   291 lemma t_App_elim:
       
   292   assumes a: "\<Gamma> \<turnstile> App t1 t2 : T"
       
   293   obtains T' where "\<Gamma> \<turnstile> t1 : T' \<rightarrow> T" "\<Gamma> \<turnstile> t2 : T'"
       
   294 using a
       
   295 by (cases) (auto simp add: lam.eq_iff lam.distinct)
       
   296 
       
   297 text {* we have not yet generated strong elimination rules *}
       
   298 lemma t_Lam_elim:
       
   299   assumes ty: "\<Gamma> \<turnstile> Lam [x].t : T" 
       
   300   and     fc: "atom x \<sharp> \<Gamma>" 
       
   301   obtains T1 T2 where "T = T1 \<rightarrow> T2" "(x, T1) # \<Gamma> \<turnstile> t : T2"
       
   302 using ty fc
       
   303 apply(cases)
       
   304 apply(auto simp add: lam.eq_iff lam.distinct ty.eq_iff)
       
   305 apply(auto simp add: Abs1_eq_iff)
       
   306 apply(rotate_tac 3)
       
   307 apply(drule_tac p="(x \<leftrightarrow> xa)" in permute_boolI)
       
   308 apply(perm_simp)
       
   309 apply(auto simp add: flip_def swap_fresh_fresh ty_fresh)
       
   310 done
       
   311 
       
   312 theorem cbv_type_preservation:
       
   313   assumes a: "t \<longrightarrow>cbv t'"
       
   314   and     b: "\<Gamma> \<turnstile> t : T" 
       
   315   shows "\<Gamma> \<turnstile> t' : T"
       
   316 using a b
       
   317 by (nominal_induct avoiding: \<Gamma> T rule: cbv.strong_induct)
       
   318    (auto elim!: t_Lam_elim t_App_elim simp add: type_substitution ty.eq_iff)
       
   319 
       
   320 corollary cbvs_type_preservation:
       
   321   assumes a: "t \<longrightarrow>cbv* t'"
       
   322   and     b: "\<Gamma> \<turnstile> t : T" 
       
   323   shows "\<Gamma> \<turnstile> t' : T"
       
   324 using a b
       
   325 by (induct) (auto intro: cbv_type_preservation)
       
   326 
       
   327 text {* 
       
   328   The type-preservation property for the machine and 
       
   329   evaluation relation. 
       
   330 *}
       
   331 
       
   332 theorem machine_type_preservation:
       
   333   assumes a: "<t, []> \<mapsto>* <t', []>"
       
   334   and     b: "\<Gamma> \<turnstile> t : T" 
       
   335   shows "\<Gamma> \<turnstile> t' : T"
       
   336 proof -
       
   337   have "t \<longrightarrow>cbv* t'" using a machines_implies_cbvs by simp
       
   338   then show "\<Gamma> \<turnstile> t' : T" using b cbvs_type_preservation by simp
       
   339 qed
       
   340 
       
   341 theorem eval_type_preservation:
       
   342   assumes a: "t \<Down> t'"
       
   343   and     b: "\<Gamma> \<turnstile> t : T" 
       
   344   shows "\<Gamma> \<turnstile> t' : T"
       
   345 proof -
       
   346   have "<t, []> \<mapsto>* <t', []>" using a eval_implies_machines by simp
       
   347   then show "\<Gamma> \<turnstile> t' : T" using b machine_type_preservation by simp
       
   348 qed
       
   349 
       
   350 text {* The Progress Property *}
       
   351 
       
   352 lemma canonical_tArr:
       
   353   assumes a: "[] \<turnstile> t : T1 \<rightarrow> T2"
       
   354   and     b: "val t"
       
   355   obtains x t' where "t = Lam [x].t'"
       
   356 using b a by (induct) (auto) 
       
   357 
       
   358 theorem progress:
       
   359   assumes a: "[] \<turnstile> t : T"
       
   360   shows "(\<exists>t'. t \<longrightarrow>cbv t') \<or> (val t)"
       
   361 using a
       
   362 by (induct \<Gamma>\<equiv>"[]::ty_ctx" t T)
       
   363    (auto elim: canonical_tArr)
       
   364 
       
   365 text {*
       
   366   Done!
       
   367 *}
       
   368 
   241 
   369 end
   242 end
   370 
   243