equal
deleted
inserted
replaced
1 (*<*) |
1 (*<*) |
2 theory Paper |
2 theory Paper |
3 imports "Quotient" |
3 imports "Quotient" |
4 "LaTeXsugar" |
4 "LaTeXsugar" |
5 begin |
5 begin |
|
6 |
|
7 notation (latex output) |
|
8 fun_rel ("_ ===> _" [51, 51] 50) |
|
9 |
6 (*>*) |
10 (*>*) |
7 |
11 |
8 section {* Introduction *} |
12 section {* Introduction *} |
9 |
13 |
10 text {* TBD *} |
14 text {* TBD *} |
58 Rep and Abs, Rsp and Prs |
62 Rep and Abs, Rsp and Prs |
59 *} |
63 *} |
60 |
64 |
61 section {* Lifting Theorems *} |
65 section {* Lifting Theorems *} |
62 |
66 |
|
67 text {* TBD *} |
|
68 |
|
69 text {* Why providing a statement to prove is necessary is some cases *} |
|
70 |
|
71 subsection {* Regularization *} |
|
72 |
|
73 text {* |
|
74 Transformation of the theorem statement: |
|
75 \begin{itemize} |
|
76 \item Quantifiers and abstractions involving raw types replaced by bounded ones. |
|
77 \item Equalities involving raw types replaced by bounded ones. |
|
78 \end{itemize} |
|
79 |
|
80 The procedure. |
|
81 |
|
82 Example of non-regularizable theorem ($0 = 1$). |
|
83 |
|
84 New regularization lemmas: |
|
85 \begin{lemma} |
|
86 If @{term R2} is an equivalence relation, then: |
|
87 \begin{eqnarray} |
|
88 @{thm (rhs) ball_reg_eqv_range[no_vars]} & = & @{thm (lhs) ball_reg_eqv_range[no_vars]}\\ |
|
89 @{thm (rhs) bex_reg_eqv_range[no_vars]} & = & @{thm (lhs) bex_reg_eqv_range[no_vars]} |
|
90 \end{eqnarray} |
|
91 \end{lemma} |
|
92 |
|
93 *} |
|
94 |
|
95 subsection {* Injection *} |
|
96 |
|
97 subsection {* Cleaning *} |
|
98 |
|
99 text {* Preservation of quantifiers, abstractions, relations, quotient-constants |
|
100 (definitions) and user given constant preservation lemmas *} |
|
101 |
|
102 section {* Examples *} |
|
103 |
63 section {* Related Work *} |
104 section {* Related Work *} |
64 |
105 |
65 text {* |
106 text {* |
66 \begin{itemize} |
107 \begin{itemize} |
67 |
108 |