Nominal/Nominal2_Abs.thy
changeset 2875 ab2aded5f7c9
parent 2843 1ae3c9b2d557
child 2878 06d91b7b5756
equal deleted inserted replaced
2874:1628e47fa57c 2875:ab2aded5f7c9
  1034   apply(simp add: supp_swap fresh_star_def s f1 f2)
  1034   apply(simp add: supp_swap fresh_star_def s f1 f2)
  1035   apply(simp add: swap_commute p)
  1035   apply(simp add: swap_commute p)
  1036   apply(simp add: Abs1_eq_iff[OF s s])
  1036   apply(simp add: Abs1_eq_iff[OF s s])
  1037   done
  1037   done
  1038 
  1038 
       
  1039 lemma Abs_lst_fcb:
       
  1040   fixes xs ys :: "'a :: fs"
       
  1041     and S T :: "'b :: fs"
       
  1042   assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"
       
  1043     and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"
       
  1044     and f2: "\<And>x. supp T - set (ba xs) = supp S - set (ba ys) \<Longrightarrow> x \<in> set (ba ys) \<Longrightarrow> x \<sharp> f xs T"
       
  1045     and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> set (ba xs) \<union> set (ba ys) \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
       
  1046   shows "f xs T = f ys S"
       
  1047   using e apply -
       
  1048   apply(subst (asm) Abs_eq_iff2)
       
  1049   apply(simp add: alphas)
       
  1050   apply(elim exE conjE)
       
  1051   apply(rule trans)
       
  1052   apply(rule_tac p="p" in supp_perm_eq[symmetric])
       
  1053   apply(rule fresh_star_supp_conv)
       
  1054   apply(drule fresh_star_perm_set_conv)
       
  1055   apply(rule finite_Diff)
       
  1056   apply(rule finite_supp)
       
  1057   apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")
       
  1058   apply(metis Un_absorb2 fresh_star_Un)
       
  1059   apply(subst fresh_star_Un)
       
  1060   apply(rule conjI)
       
  1061   apply(simp add: fresh_star_def f1)
       
  1062   apply(simp add: fresh_star_def f2)
       
  1063   apply(simp add: eqv)
       
  1064   done
       
  1065 
  1039 lemma Abs_res_fcb:
  1066 lemma Abs_res_fcb:
  1040   fixes xs ys :: "('a :: at_base) set"
  1067   fixes xs ys :: "('a :: at_base) set"
  1041     and S T :: "'b :: fs"
  1068     and S T :: "'b :: fs"
  1042   assumes e: "(Abs_res (atom ` xs) T) = (Abs_res (atom ` ys) S)"
  1069   assumes e: "(Abs_res (atom ` xs) T) = (Abs_res (atom ` ys) S)"
  1043     and f1: "\<And>x. x \<in> atom ` xs \<Longrightarrow> x \<in> supp T \<Longrightarrow> x \<sharp> f xs T"
  1070     and f1: "\<And>x. x \<in> atom ` xs \<Longrightarrow> x \<in> supp T \<Longrightarrow> x \<sharp> f xs T"