Quot/Examples/IntEx.thy
changeset 620 a98b136fc88a
parent 619 faab2540f13e
child 621 c10a46fa0de9
equal deleted inserted replaced
619:faab2540f13e 620:a98b136fc88a
   321      ((ABS_my_int ---> REP_my_int) ((REP_my_int ---> ABS_my_int) (Babs (Respects op \<approx>) (
   321      ((ABS_my_int ---> REP_my_int) ((REP_my_int ---> ABS_my_int) (Babs (Respects op \<approx>) (
   322        ((ABS_my_int ---> REP_my_int) ((REP_my_int ---> ABS_my_int) (\<lambda>y. REP_my_int (ABS_my_int y))))))))"
   322        ((ABS_my_int ---> REP_my_int) ((REP_my_int ---> ABS_my_int) (\<lambda>y. REP_my_int (ABS_my_int y))))))))"
   323 apply(tactic {* all_inj_repabs_tac @{context} 1*})
   323 apply(tactic {* all_inj_repabs_tac @{context} 1*})
   324 done
   324 done
   325 
   325 
       
   326 lemma id_rsp:
       
   327   shows "(R ===> R) id id"
       
   328 by simp
       
   329 
       
   330 lemma lam_tst3a_reg: "(op \<approx> ===> op \<approx>) (Babs (Respects op \<approx>) (\<lambda>y. y)) (Babs (Respects op \<approx>) (\<lambda>x. x))"
       
   331 apply (rule babs_rsp[OF Quotient_my_int])
       
   332 apply (simp add: id_rsp)
       
   333 done
       
   334 
   326 
   335 
   327 lemma "(\<lambda>(y :: my_int). y) = (\<lambda>(x :: my_int). x)"
   336 lemma "(\<lambda>(y :: my_int). y) = (\<lambda>(x :: my_int). x)"
   328 apply(tactic {* procedure_tac @{context} @{thm lam_tst3a} 1 *})
   337 apply(tactic {* procedure_tac @{context} @{thm lam_tst3a} 1 *})
   329 defer
   338 defer
   330 apply(tactic {* all_inj_repabs_tac @{context} 1*})
   339 apply(tactic {* all_inj_repabs_tac @{context} 1*})