Nominal/Abs.thy
changeset 1558 a5ba76208983
parent 1557 fee2389789ad
child 1563 eb60f360a200
equal deleted inserted replaced
1557:fee2389789ad 1558:a5ba76208983
    70   unfolding alphas
    70   unfolding alphas
    71   unfolding fresh_star_def
    71   unfolding fresh_star_def
    72   by (auto simp add:  fresh_minus_perm)
    72   by (auto simp add:  fresh_minus_perm)
    73 
    73 
    74 lemma alpha_gen_trans:
    74 lemma alpha_gen_trans:
    75   assumes a: "(bs, x) \<approx>gen R f p1 (cs, y)"
    75   assumes a: "\<lbrakk>R (p \<bullet> x) y; R (q \<bullet> y) z\<rbrakk> \<Longrightarrow> R ((q + p) \<bullet> x) z"
    76   and     b: "(cs, y) \<approx>gen R f p2 (ds, z)"
    76   shows "\<lbrakk>(bs, x) \<approx>gen R f p (cs, y); (cs, y) \<approx>gen R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>gen R f (q + p) (ds, z)"
    77   and     c: "\<lbrakk>R (p1 \<bullet> x) y; R (p2 \<bullet> y) z\<rbrakk> \<Longrightarrow> R ((p2 + p1) \<bullet> x) z"
    77   and   "\<lbrakk>(bs, x) \<approx>res R f p (cs, y); (cs, y) \<approx>res R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>res R f (q + p) (ds, z)"
    78   shows "(bs, x) \<approx>gen R f (p2 + p1) (ds, z)"
    78   and   "\<lbrakk>(es, x) \<approx>lst R f p (gs, y); (gs, y) \<approx>lst R f q (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>lst R f (q + p) (hs, z)"
    79   using a b c using supp_plus_perm
    79   using a 
    80   apply(simp add: alpha_gen fresh_star_def fresh_def)
    80   unfolding alphas
       
    81   unfolding fresh_star_def
       
    82   by (simp_all add: fresh_plus_perm)
       
    83 
       
    84 lemma alpha_gen_eqvt:
       
    85   assumes a: "R (q \<bullet> x) y \<Longrightarrow> R (p \<bullet> (q \<bullet> x)) (p \<bullet> y)"
       
    86   and     b: "p \<bullet> (f x) = f (p \<bullet> x)"
       
    87   and     c: "p \<bullet> (f y) = f (p \<bullet> y)"
       
    88   shows "(bs, x) \<approx>gen R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>gen R f (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
       
    89   and   "(bs, x) \<approx>res R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>res R f (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
       
    90   and   "(ds, x) \<approx>lst R f q (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>lst R f (p \<bullet> q) (p \<bullet> es, p \<bullet> y)" 
       
    91   unfolding alphas
       
    92   unfolding set_eqvt[symmetric]
       
    93   unfolding b[symmetric] c[symmetric]
       
    94   unfolding Diff_eqvt[symmetric]
       
    95   unfolding permute_eqvt[symmetric]
       
    96   using a
       
    97   by (auto simp add: fresh_star_permute_iff)
       
    98 
       
    99 fun
       
   100   alpha_abs 
       
   101 where
       
   102   "alpha_abs (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op=) supp p (cs, y))"
       
   103 
       
   104 notation
       
   105   alpha_abs ("_ \<approx>abs _")
       
   106 
       
   107 lemma alpha_abs_swap:
       
   108   assumes a1: "a \<notin> (supp x) - bs"
       
   109   and     a2: "b \<notin> (supp x) - bs"
       
   110   shows "(bs, x) \<approx>abs ((a \<rightleftharpoons> b) \<bullet> bs, (a \<rightleftharpoons> b) \<bullet> x)"
       
   111   using a1 a2
       
   112   unfolding Diff_iff
       
   113   unfolding alpha_abs.simps
       
   114   unfolding alphas
       
   115   unfolding supp_eqvt[symmetric] Diff_eqvt[symmetric]
       
   116   unfolding fresh_star_def fresh_def
       
   117   unfolding swap_set_not_in[OF a1 a2] 
       
   118   by (rule_tac x="(a \<rightleftharpoons> b)" in exI)
       
   119      (auto simp add: supp_perm swap_atom)
       
   120 
       
   121 lemma alpha_gen_swap_fun:
       
   122   assumes f_eqvt: "\<And>pi. (pi \<bullet> (f x)) = f (pi \<bullet> x)"
       
   123   assumes a1: "a \<notin> (f x) - bs"
       
   124   and     a2: "b \<notin> (f x) - bs"
       
   125   shows "\<exists>pi. (bs, x) \<approx>gen (op=) f pi ((a \<rightleftharpoons> b) \<bullet> bs, (a \<rightleftharpoons> b) \<bullet> x)"
       
   126   apply(rule_tac x="(a \<rightleftharpoons> b)" in exI)
       
   127   apply(simp add: alpha_gen)
       
   128   apply(simp add: f_eqvt[symmetric] Diff_eqvt[symmetric])
       
   129   apply(simp add: swap_set_not_in[OF a1 a2])
       
   130   apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}")
       
   131   using a1 a2
       
   132   apply(simp add: fresh_star_def fresh_def)
    81   apply(blast)
   133   apply(blast)
    82   done
   134   apply(simp add: supp_swap)
    83 
   135   done
    84 lemma alpha_gen_eqvt:
   136 
    85   assumes a: "(bs, x) \<approx>gen R f q (cs, y)"
   137 fun
    86   and     b: "R (q \<bullet> x) y \<Longrightarrow> R (p \<bullet> (q \<bullet> x)) (p \<bullet> y)"
   138   supp_abs_fun
    87   and     c: "p \<bullet> (f x) = f (p \<bullet> x)"
   139 where
    88   and     d: "p \<bullet> (f y) = f (p \<bullet> y)"
   140   "supp_abs_fun (bs, x) = (supp x) - bs"
    89   shows "(p \<bullet> bs, p \<bullet> x) \<approx>gen R f (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
   141 
    90   using a b
   142 
    91   apply(simp add: alpha_gen c[symmetric] d[symmetric] Diff_eqvt[symmetric])
   143 lemma supp_abs_fun_lemma:
    92   apply(simp add: permute_eqvt[symmetric])
   144   assumes a: "x \<approx>abs y" 
    93   apply(simp add: fresh_star_permute_iff)
   145   shows "supp_abs_fun x = supp_abs_fun y"
       
   146   using a
       
   147   apply(induct rule: alpha_abs.induct)
       
   148   apply(simp add: alpha_gen)
       
   149   done
       
   150   
       
   151 
       
   152 quotient_type 'a abs_gen = "(atom set \<times> 'a::pt)" / "alpha_abs"
       
   153   apply(rule equivpI)
       
   154   unfolding reflp_def symp_def transp_def
       
   155   apply(simp_all)
       
   156   (* refl *)
       
   157   apply(clarify)
       
   158   apply(rule_tac x="0" in exI)
       
   159   apply(rule alpha_gen_refl)
       
   160   apply(simp)
       
   161   (* symm *)
       
   162   apply(clarify)
       
   163   apply(rule_tac x="- p" in exI)
       
   164   apply(rule alpha_gen_sym)
    94   apply(clarsimp)
   165   apply(clarsimp)
    95   done
   166   apply(assumption)
       
   167   (* trans *)
       
   168   apply(clarify)
       
   169   apply(rule_tac x="pa + p" in exI)
       
   170   apply(rule alpha_gen_trans)
       
   171   apply(auto)
       
   172   done
       
   173 
       
   174 quotient_definition
       
   175   "Abs::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_gen"
       
   176 is
       
   177   "Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"
       
   178 
       
   179 lemma [quot_respect]:
       
   180   shows "((op =) ===> (op =) ===> alpha_abs) Pair Pair"
       
   181   apply(clarsimp)
       
   182   apply(rule exI)
       
   183   apply(rule alpha_gen_refl)
       
   184   apply(simp)
       
   185   done
       
   186 
       
   187 lemma [quot_respect]:
       
   188   shows "((op =) ===> alpha_abs ===> alpha_abs) permute permute"
       
   189   apply(clarsimp)
       
   190   apply(rule exI)
       
   191   apply(rule alpha_gen_eqvt)
       
   192   apply(simp_all add: supp_eqvt)
       
   193   done
       
   194 
       
   195 lemma [quot_respect]:
       
   196   shows "(alpha_abs ===> (op =)) supp_abs_fun supp_abs_fun"
       
   197   apply(simp add: supp_abs_fun_lemma)
       
   198   done
       
   199 
       
   200 lemma abs_induct:
       
   201   "\<lbrakk>\<And>as (x::'a::pt). P (Abs as x)\<rbrakk> \<Longrightarrow> P t"
       
   202   apply(lifting prod.induct[where 'a="atom set" and 'b="'a"])
       
   203   done
       
   204 
       
   205 (* TEST case *)
       
   206 lemmas abs_induct2 = prod.induct[where 'a="atom set" and 'b="'a::pt", quot_lifted]
       
   207 thm abs_induct abs_induct2
       
   208 
       
   209 instantiation abs_gen :: (pt) pt
       
   210 begin
       
   211 
       
   212 quotient_definition
       
   213   "permute_abs_gen::perm \<Rightarrow> ('a::pt abs_gen) \<Rightarrow> 'a abs_gen"
       
   214 is
       
   215   "permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"
       
   216 
       
   217 (* ??? has to be 'a \<dots> 'b does not work *)
       
   218 lemma permute_ABS [simp]:
       
   219   fixes x::"'a::pt"  
       
   220   shows "(p \<bullet> (Abs as x)) = Abs (p \<bullet> as) (p \<bullet> x)"
       
   221   thm permute_prod.simps
       
   222   by (lifting permute_prod.simps(1)[where 'a="atom set" and 'b="'a"])
       
   223 
       
   224 instance
       
   225   apply(default)
       
   226   apply(induct_tac [!] x rule: abs_induct)
       
   227   apply(simp_all)
       
   228   done
       
   229 
       
   230 end
       
   231 
       
   232 quotient_definition
       
   233   "supp_Abs_fun :: ('a::pt) abs_gen \<Rightarrow> atom \<Rightarrow> bool"
       
   234 is
       
   235   "supp_abs_fun"
       
   236 
       
   237 lemma supp_Abs_fun_simp:
       
   238   shows "supp_Abs_fun (Abs bs x) = (supp x) - bs"
       
   239   by (lifting supp_abs_fun.simps(1))
       
   240 
       
   241 lemma supp_Abs_fun_eqvt [eqvt]:
       
   242   shows "(p \<bullet> supp_Abs_fun x) = supp_Abs_fun (p \<bullet> x)"
       
   243   apply(induct_tac x rule: abs_induct)
       
   244   apply(simp add: supp_Abs_fun_simp supp_eqvt Diff_eqvt)
       
   245   done
       
   246 
       
   247 lemma supp_Abs_fun_fresh:
       
   248   shows "a \<sharp> Abs bs x \<Longrightarrow> a \<sharp> supp_Abs_fun (Abs bs x)"
       
   249   apply(rule fresh_fun_eqvt_app)
       
   250   apply(simp add: eqvts_raw)
       
   251   apply(simp)
       
   252   done
       
   253 
       
   254 lemma Abs_swap:
       
   255   assumes a1: "a \<notin> (supp x) - bs"
       
   256   and     a2: "b \<notin> (supp x) - bs"
       
   257   shows "(Abs bs x) = (Abs ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x))"
       
   258   using a1 a2 by (lifting alpha_abs_swap)
       
   259 
       
   260 lemma Abs_supports:
       
   261   shows "((supp x) - as) supports (Abs as x)"
       
   262   unfolding supports_def
       
   263   apply(clarify)
       
   264   apply(simp (no_asm))
       
   265   apply(subst Abs_swap[symmetric])
       
   266   apply(simp_all)
       
   267   done
       
   268 
       
   269 lemma finite_supp_Abs_subset1:
       
   270   assumes "finite (supp x)"
       
   271   shows "(supp x) - as \<subseteq> supp (Abs as x)"
       
   272   apply(simp add: supp_conv_fresh)
       
   273   apply(auto)
       
   274   apply(drule_tac supp_Abs_fun_fresh)
       
   275   apply(simp only: supp_Abs_fun_simp)
       
   276   apply(simp add: fresh_def)
       
   277   apply(simp add: supp_finite_atom_set assms)
       
   278   done
       
   279 
       
   280 lemma finite_supp_Abs_subset2:
       
   281   assumes "finite (supp x)"
       
   282   shows "supp (Abs as x) \<subseteq> (supp x) - as"
       
   283   apply(rule supp_is_subset)
       
   284   apply(rule Abs_supports)
       
   285   apply(simp add: assms)
       
   286   done
       
   287 
       
   288 lemma finite_supp_Abs:
       
   289   assumes "finite (supp x)"
       
   290   shows "supp (Abs as x) = (supp x) - as"
       
   291   apply(rule_tac subset_antisym)
       
   292   apply(rule finite_supp_Abs_subset2[OF assms])
       
   293   apply(rule finite_supp_Abs_subset1[OF assms])
       
   294   done
       
   295 
       
   296 lemma supp_Abs:
       
   297   fixes x::"'a::fs"
       
   298   shows "supp (Abs as x) = (supp x) - as"
       
   299   apply(rule finite_supp_Abs)
       
   300   apply(simp add: finite_supp)
       
   301   done
       
   302 
       
   303 instance abs_gen :: (fs) fs
       
   304   apply(default)
       
   305   apply(induct_tac x rule: abs_induct)
       
   306   apply(simp add: supp_Abs)
       
   307   apply(simp add: finite_supp)
       
   308   done
       
   309 
       
   310 lemma Abs_fresh_iff:
       
   311   fixes x::"'a::fs"
       
   312   shows "a \<sharp> Abs bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
       
   313   apply(simp add: fresh_def)
       
   314   apply(simp add: supp_Abs)
       
   315   apply(auto)
       
   316   done
       
   317 
       
   318 lemma Abs_eq_iff:
       
   319   shows "Abs bs x = Abs cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op =) supp p (cs, y))"
       
   320   by (lifting alpha_abs.simps(1))
       
   321 
       
   322 
       
   323 
       
   324 (* 
       
   325   below is a construction site for showing that in the
       
   326   single-binder case, the old and new alpha equivalence 
       
   327   coincide
       
   328 *)
       
   329 
       
   330 fun
       
   331   alpha1
       
   332 where
       
   333   "alpha1 (a, x) (b, y) \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y)"
       
   334 
       
   335 notation 
       
   336   alpha1 ("_ \<approx>abs1 _")
       
   337 
       
   338 fun
       
   339   alpha2
       
   340 where
       
   341   "alpha2 (a, x) (b, y) \<longleftrightarrow> (\<exists>c. c \<sharp> (a,b,x,y) \<and> ((c \<rightleftharpoons> a) \<bullet> x) = ((c \<rightleftharpoons> b) \<bullet> y))"
       
   342 
       
   343 notation 
       
   344   alpha2 ("_ \<approx>abs2 _")
       
   345 
       
   346 lemma alpha_old_new:
       
   347   assumes a: "(a, x) \<approx>abs1 (b, y)" "sort_of a = sort_of b"
       
   348   shows "({a}, x) \<approx>abs ({b}, y)"
       
   349 using a
       
   350 apply(simp)
       
   351 apply(erule disjE)
       
   352 apply(simp)
       
   353 apply(rule exI)
       
   354 apply(rule alpha_gen_refl)
       
   355 apply(simp)
       
   356 apply(rule_tac x="(a \<rightleftharpoons> b)" in  exI)
       
   357 apply(simp add: alpha_gen)
       
   358 apply(simp add: fresh_def)
       
   359 apply(rule conjI)
       
   360 apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in  permute_eq_iff[THEN iffD1])
       
   361 apply(rule trans)
       
   362 apply(simp add: Diff_eqvt supp_eqvt)
       
   363 apply(subst swap_set_not_in)
       
   364 back
       
   365 apply(simp)
       
   366 apply(simp)
       
   367 apply(simp add: permute_set_eq)
       
   368 apply(rule conjI)
       
   369 apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in fresh_star_permute_iff[THEN iffD1])
       
   370 apply(simp add: permute_self)
       
   371 apply(simp add: Diff_eqvt supp_eqvt)
       
   372 apply(simp add: permute_set_eq)
       
   373 apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}")
       
   374 apply(simp add: fresh_star_def fresh_def)
       
   375 apply(blast)
       
   376 apply(simp add: supp_swap)
       
   377 apply(simp add: eqvts)
       
   378 done
       
   379 
       
   380 lemma perm_zero:
       
   381   assumes a: "\<forall>x::atom. p \<bullet> x = x"
       
   382   shows "p = 0"
       
   383 using a
       
   384 by (simp add: expand_perm_eq)
       
   385 
       
   386 fun
       
   387   add_perm 
       
   388 where
       
   389   "add_perm [] = 0"
       
   390 | "add_perm ((a, b) # xs) = (a \<rightleftharpoons> b) + add_perm xs"
       
   391 
       
   392 fun
       
   393   elem_perm
       
   394 where
       
   395   "elem_perm [] = {}"
       
   396 | "elem_perm ((a, b) # xs) = {a, b} \<union> elem_perm xs"
       
   397 
       
   398 
       
   399 lemma add_perm_apend:
       
   400   shows "add_perm (xs @ ys) = add_perm xs + add_perm ys"
       
   401 apply(induct xs arbitrary: ys)
       
   402 apply(auto simp add: add_assoc)
       
   403 done
       
   404 
       
   405 lemma perm_list_exists:
       
   406   fixes p::perm
       
   407   shows "\<exists>xs. p = add_perm xs \<and> supp xs \<subseteq> supp p"
       
   408 apply(induct p taking: "\<lambda>p::perm. card (supp p)" rule: measure_induct)
       
   409 apply(rename_tac p)
       
   410 apply(case_tac "supp p = {}")
       
   411 apply(simp)
       
   412 apply(simp add: supp_perm)
       
   413 apply(drule perm_zero)
       
   414 apply(simp)
       
   415 apply(rule_tac x="[]" in exI)
       
   416 apply(simp add: supp_Nil)
       
   417 apply(subgoal_tac "\<exists>x. x \<in> supp p")
       
   418 defer
       
   419 apply(auto)[1]
       
   420 apply(erule exE)
       
   421 apply(drule_tac x="p + (((- p) \<bullet> x) \<rightleftharpoons> x)" in spec)
       
   422 apply(drule mp)
       
   423 defer
       
   424 apply(erule exE)
       
   425 apply(rule_tac x="xs @ [((- p) \<bullet> x, x)]" in exI)
       
   426 apply(simp add: add_perm_apend)
       
   427 apply(erule conjE)
       
   428 apply(drule sym)
       
   429 apply(simp)
       
   430 apply(simp add: expand_perm_eq)
       
   431 apply(simp add: supp_append)
       
   432 apply(simp add: supp_perm supp_Cons supp_Nil supp_Pair supp_atom)
       
   433 apply(rule conjI)
       
   434 prefer 2
       
   435 apply(auto)[1]
       
   436 apply (metis left_minus minus_unique permute_atom_def_raw permute_minus_cancel(2))
       
   437 defer
       
   438 apply(rule psubset_card_mono)
       
   439 apply(simp add: finite_supp)
       
   440 apply(rule psubsetI)
       
   441 defer
       
   442 apply(subgoal_tac "x \<notin> supp (p + (- p \<bullet> x \<rightleftharpoons> x))")
       
   443 apply(blast)
       
   444 apply(simp add: supp_perm)
       
   445 defer
       
   446 apply(auto simp add: supp_perm)[1]
       
   447 apply(case_tac "x = xa")
       
   448 apply(simp)
       
   449 apply(case_tac "((- p) \<bullet> x) = xa")
       
   450 apply(simp)
       
   451 apply(case_tac "sort_of xa = sort_of x")
       
   452 apply(simp)
       
   453 apply(auto)[1]
       
   454 apply(simp)
       
   455 apply(simp)
       
   456 apply(subgoal_tac "{a. p \<bullet> (- p \<bullet> x \<rightleftharpoons> x) \<bullet> a \<noteq> a} \<subseteq> {a. p \<bullet> a \<noteq> a}")
       
   457 apply(blast)
       
   458 apply(auto simp add: supp_perm)[1]
       
   459 apply(case_tac "x = xa")
       
   460 apply(simp)
       
   461 apply(case_tac "((- p) \<bullet> x) = xa")
       
   462 apply(simp)
       
   463 apply(case_tac "sort_of xa = sort_of x")
       
   464 apply(simp)
       
   465 apply(auto)[1]
       
   466 apply(simp)
       
   467 apply(simp)
       
   468 done
       
   469 
       
   470 lemma tt0:
       
   471   fixes p::perm
       
   472   shows "(supp x) \<sharp>* p \<Longrightarrow> \<forall>a \<in> supp p. a \<sharp> x"
       
   473 apply(auto simp add: fresh_star_def supp_perm fresh_def)
       
   474 done
       
   475 
       
   476 lemma uu0:
       
   477   shows "(\<forall>a \<in> elem_perm xs. a \<sharp> x) \<Longrightarrow> (add_perm xs \<bullet> x) = x"
       
   478 apply(induct xs rule: add_perm.induct)
       
   479 apply(simp)
       
   480 apply(simp add: swap_fresh_fresh)
       
   481 done
       
   482 
       
   483 lemma yy0:
       
   484   fixes xs::"(atom \<times> atom) list"
       
   485   shows "supp xs = elem_perm xs"
       
   486 apply(induct xs rule: elem_perm.induct)
       
   487 apply(auto simp add: supp_Nil supp_Cons supp_Pair supp_atom)
       
   488 done
       
   489 
       
   490 lemma tt1:
       
   491   shows "(supp x) \<sharp>* p \<Longrightarrow> p \<bullet> x = x"
       
   492 apply(drule tt0)
       
   493 apply(subgoal_tac "\<exists>xs. p = add_perm xs \<and> supp xs \<subseteq> supp p")
       
   494 prefer 2
       
   495 apply(rule perm_list_exists)
       
   496 apply(erule exE)
       
   497 apply(simp only: yy0)
       
   498 apply(rule uu0)
       
   499 apply(auto)
       
   500 done
       
   501 
       
   502 
       
   503 lemma perm_induct_test:
       
   504   fixes P :: "perm => bool"
       
   505   assumes fin: "finite (supp p)" 
       
   506   assumes zero: "P 0"
       
   507   assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)"
       
   508   assumes plus: "\<And>p1 p2. \<lbrakk>supp p1 \<inter> supp p2 = {}; P p1; P p2\<rbrakk> \<Longrightarrow> P (p1 + p2)"
       
   509   shows "P p"
       
   510 using fin
       
   511 apply(induct F\<equiv>"supp p" arbitrary: p rule: finite_induct)
       
   512 apply(simp add: supp_perm)
       
   513 apply(drule perm_zero)
       
   514 apply(simp add: zero)
       
   515 apply(rotate_tac 3)
       
   516 oops
       
   517 
       
   518 lemma ii:
       
   519   assumes "\<forall>x \<in> A. p \<bullet> x = x"
       
   520   shows "p \<bullet> A = A"
       
   521 using assms
       
   522 apply(auto)
       
   523 apply (metis Collect_def Collect_mem_eq Int_absorb assms eqvt_bound inf_Int_eq mem_def mem_permute_iff)
       
   524 apply (metis Collect_def Collect_mem_eq Int_absorb assms eqvt_apply eqvt_bound eqvt_lambda inf_Int_eq mem_def mem_permute_iff permute_minus_cancel(2) permute_pure)
       
   525 done
       
   526 
       
   527 
       
   528 
       
   529 lemma alpha_abs_Pair:
       
   530   shows "(bs, (x1, x2)) \<approx>gen (\<lambda>(x1,x2) (y1,y2). x1=y1 \<and> x2=y2) (\<lambda>(x,y). supp x \<union> supp y) p (cs, (y1, y2))
       
   531          \<longleftrightarrow> ((bs, x1) \<approx>gen (op=) supp p (cs, y1) \<and> (bs, x2) \<approx>gen (op=) supp p (cs, y2))"         
       
   532   apply(simp add: alpha_gen)
       
   533   apply(simp add: fresh_star_def)
       
   534   apply(simp add: ball_Un Un_Diff)
       
   535   apply(rule iffI)
       
   536   apply(simp)
       
   537   defer
       
   538   apply(simp)
       
   539   apply(rule conjI)
       
   540   apply(clarify)
       
   541   apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
       
   542   apply(rule sym)
       
   543   apply(rule ii)
       
   544   apply(simp add: fresh_def supp_perm)
       
   545   apply(clarify)
       
   546   apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
       
   547   apply(simp add: fresh_def supp_perm)
       
   548   apply(rule sym)
       
   549   apply(rule ii)
       
   550   apply(simp)
       
   551   done
       
   552 
       
   553 
       
   554 lemma yy:
       
   555   assumes "S1 - {x} = S2 - {x}" "x \<in> S1" "x \<in> S2"
       
   556   shows "S1 = S2"
       
   557 using assms
       
   558 apply (metis insert_Diff_single insert_absorb)
       
   559 done
       
   560 
       
   561 lemma kk:
       
   562   assumes a: "p \<bullet> x = y"
       
   563   shows "\<forall>a \<in> supp x. (p \<bullet> a) \<in> supp y"
       
   564 using a
       
   565 apply(auto)
       
   566 apply(rule_tac p="- p" in permute_boolE)
       
   567 apply(simp add: mem_eqvt supp_eqvt)
       
   568 done
       
   569 
       
   570 lemma ww:
       
   571   assumes "a \<notin> supp x" "b \<in> supp x" "a \<noteq> b" "sort_of a = sort_of b"
       
   572   shows "((a \<rightleftharpoons> b) \<bullet> x) \<noteq> x"
       
   573 apply(subgoal_tac "(supp x) supports x")
       
   574 apply(simp add: supports_def)
       
   575 using assms
       
   576 apply -
       
   577 apply(drule_tac x="a" in spec)
       
   578 defer
       
   579 apply(rule supp_supports)
       
   580 apply(auto)
       
   581 apply(rotate_tac 1)
       
   582 apply(drule_tac p="(a \<rightleftharpoons> b)" in permute_boolI)
       
   583 apply(simp add: mem_eqvt supp_eqvt)
       
   584 done
       
   585 
       
   586 lemma alpha_abs_sym:
       
   587   assumes a: "({a}, x) \<approx>abs ({b}, y)"
       
   588   shows "({b}, y) \<approx>abs ({a}, x)"
       
   589 using a
       
   590 apply(simp)
       
   591 apply(erule exE)
       
   592 apply(rule_tac x="- p" in exI)
       
   593 apply(simp add: alpha_gen)
       
   594 apply(simp add: fresh_star_def fresh_minus_perm)
       
   595 apply (metis permute_minus_cancel(2))
       
   596 done
       
   597 
       
   598 lemma alpha_abs_trans:
       
   599   assumes a: "({a1}, x1) \<approx>abs ({a2}, x2)"
       
   600   assumes b: "({a2}, x2) \<approx>abs ({a3}, x3)"
       
   601   shows "({a1}, x1) \<approx>abs ({a3}, x3)"
       
   602 using a b
       
   603 apply(simp)
       
   604 apply(erule exE)+
       
   605 apply(rule_tac x="pa + p" in exI)
       
   606 apply(simp add: alpha_gen)
       
   607 apply(simp add: fresh_star_def fresh_plus_perm)
       
   608 done
       
   609 
       
   610 lemma alpha_equal:
       
   611   assumes a: "({a}, x) \<approx>abs ({a}, y)" 
       
   612   shows "(a, x) \<approx>abs1 (a, y)"
       
   613 using a
       
   614 apply(simp)
       
   615 apply(erule exE)
       
   616 apply(simp add: alpha_gen)
       
   617 apply(erule conjE)+
       
   618 apply(case_tac "a \<notin> supp x")
       
   619 apply(simp)
       
   620 apply(subgoal_tac "supp x \<sharp>* p")
       
   621 apply(drule tt1)
       
   622 apply(simp)
       
   623 apply(simp)
       
   624 apply(simp)
       
   625 apply(case_tac "a \<notin> supp y")
       
   626 apply(simp)
       
   627 apply(drule tt1)
       
   628 apply(clarify)
       
   629 apply(simp (no_asm_use))
       
   630 apply(simp)
       
   631 apply(simp)
       
   632 apply(drule yy)
       
   633 apply(simp)
       
   634 apply(simp)
       
   635 apply(simp)
       
   636 apply(case_tac "a \<sharp> p")
       
   637 apply(subgoal_tac "supp y \<sharp>* p")
       
   638 apply(drule tt1)
       
   639 apply(clarify)
       
   640 apply(simp (no_asm_use))
       
   641 apply(metis)
       
   642 apply(auto simp add: fresh_star_def)[1]
       
   643 apply(frule_tac kk)
       
   644 apply(drule_tac x="a" in bspec)
       
   645 apply(simp)
       
   646 apply(simp add: fresh_def)
       
   647 apply(simp add: supp_perm)
       
   648 apply(subgoal_tac "((p \<bullet> a) \<sharp> p)")
       
   649 apply(simp add: fresh_def supp_perm)
       
   650 apply(simp add: fresh_star_def)
       
   651 done
       
   652 
       
   653 lemma alpha_unequal:
       
   654   assumes a: "({a}, x) \<approx>abs ({b}, y)" "sort_of a = sort_of b" "a \<noteq> b"
       
   655   shows "(a, x) \<approx>abs1 (b, y)"
       
   656 using a
       
   657 apply -
       
   658 apply(subgoal_tac "a \<notin> supp x - {a}")
       
   659 apply(subgoal_tac "b \<notin> supp x - {a}")
       
   660 defer
       
   661 apply(simp add: alpha_gen)
       
   662 apply(simp)
       
   663 apply(drule_tac alpha_abs_swap)
       
   664 apply(assumption)
       
   665 apply(simp only: insert_eqvt empty_eqvt swap_atom_simps)
       
   666 apply(drule alpha_abs_sym)
       
   667 apply(rotate_tac 4)
       
   668 apply(drule_tac alpha_abs_trans)
       
   669 apply(assumption)
       
   670 apply(drule alpha_equal)
       
   671 apply(simp)
       
   672 apply(rule_tac p="(a \<rightleftharpoons> b)" in permute_boolE)
       
   673 apply(simp add: fresh_eqvt)
       
   674 apply(simp add: fresh_def)
       
   675 done
       
   676 
       
   677 lemma alpha_new_old:
       
   678   assumes a: "({a}, x) \<approx>abs ({b}, y)" "sort_of a = sort_of b" 
       
   679   shows "(a, x) \<approx>abs1 (b, y)"
       
   680 using a
       
   681 apply(case_tac "a=b")
       
   682 apply(simp only: alpha_equal)
       
   683 apply(drule alpha_unequal)
       
   684 apply(simp)
       
   685 apply(simp)
       
   686 apply(simp)
       
   687 done
       
   688 
       
   689 (* support of concrete atom sets *)
       
   690 
       
   691 lemma supp_atom_image:
       
   692   fixes as::"'a::at_base set"
       
   693   shows "supp (atom ` as) = supp as"
       
   694 apply(simp add: supp_def)
       
   695 apply(simp add: image_eqvt)
       
   696 apply(simp add: atom_eqvt_raw)
       
   697 apply(simp add: atom_image_cong)
       
   698 done
       
   699 
       
   700 lemma swap_atom_image_fresh: "\<lbrakk>a \<sharp> atom ` (fn :: ('a :: at_base set)); b \<sharp> atom ` fn\<rbrakk> \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> fn = fn"
       
   701   apply (simp add: fresh_def)
       
   702   apply (simp add: supp_atom_image)
       
   703   apply (fold fresh_def)
       
   704   apply (simp add: swap_fresh_fresh)
       
   705   done
       
   706 
       
   707 (* TODO: The following lemmas can be moved somewhere... *)
       
   708 lemma split_rsp2[quot_respect]: "((R1 ===> R2 ===> prod_rel R1 R2 ===> op =) ===>
       
   709   prod_rel R1 R2 ===> prod_rel R1 R2 ===> op =) split split"
       
   710   by auto
       
   711 
       
   712 lemma split_prs2[quot_preserve]:
       
   713   assumes q1: "Quotient R1 Abs1 Rep1"
       
   714   and q2: "Quotient R2 Abs2 Rep2"
       
   715   shows "((Abs1 ---> Abs2 ---> prod_fun Abs1 Abs2 ---> id) ---> prod_fun Rep1 Rep2 ---> prod_fun Rep1 Rep2 ---> id) split = split"
       
   716   by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
       
   717 
       
   718 lemma alpha_gen2:
       
   719   "(bs, x1, x2) \<approx>gen (\<lambda>(x1, y1) (x2, y2). R1 x1 x2 \<and> R2 y1 y2) (\<lambda>(a, b). f1 a \<union> f2 b) pi (cs, y1, y2) =
       
   720   (f1 x1 \<union> f2 x2 - bs = f1 y1 \<union> f2 y2 - cs \<and> (f1 x1 \<union> f2 x2 - bs) \<sharp>* pi \<and> R1 (pi \<bullet> x1) y1 \<and> R2 (pi \<bullet> x2) y2
       
   721   \<and> pi \<bullet> bs = cs)"
       
   722 by (simp add: alpha_gen)
       
   723 
    96 
   724 
    97 lemma alpha_gen_compose_sym:
   725 lemma alpha_gen_compose_sym:
    98   fixes pi
   726   fixes pi
    99   assumes b: "(aa, t) \<approx>gen (\<lambda>x1 x2. R x1 x2 \<and> R x2 x1) f pi (ab, s)"
   727   assumes b: "(aa, t) \<approx>gen (\<lambda>x1 x2. R x1 x2 \<and> R x2 x1) f pi (ab, s)"
   100   and a: "\<And>pi t s. (R t s \<Longrightarrow> R (pi \<bullet> t) (pi \<bullet> s))"
   728   and a: "\<And>pi t s. (R t s \<Longrightarrow> R (pi \<bullet> t) (pi \<bullet> s))"
   171   apply(simp add: a[symmetric] atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt c[symmetric])
   799   apply(simp add: a[symmetric] atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt c[symmetric])
   172   apply(subst permute_eqvt[symmetric])
   800   apply(subst permute_eqvt[symmetric])
   173   apply(simp)
   801   apply(simp)
   174   sorry
   802   sorry
   175 
   803 
   176 fun
       
   177   alpha_abs 
       
   178 where
       
   179   "alpha_abs (bs, x) (cs, y) = (\<exists>p. (bs, x) \<approx>gen (op=) supp p (cs, y))"
       
   180 
       
   181 notation
       
   182   alpha_abs ("_ \<approx>abs _")
       
   183 
       
   184 lemma alpha_abs_swap:
       
   185   assumes a1: "a \<notin> (supp x) - bs"
       
   186   and     a2: "b \<notin> (supp x) - bs"
       
   187   shows "(bs, x) \<approx>abs ((a \<rightleftharpoons> b) \<bullet> bs, (a \<rightleftharpoons> b) \<bullet> x)"
       
   188   apply(simp)
       
   189   apply(rule_tac x="(a \<rightleftharpoons> b)" in exI)
       
   190   apply(simp add: alpha_gen)
       
   191   apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
       
   192   apply(simp add: swap_set_not_in[OF a1 a2])
       
   193   apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}")
       
   194   using a1 a2
       
   195   apply(simp add: fresh_star_def fresh_def)
       
   196   apply(blast)
       
   197   apply(simp add: supp_swap)
       
   198   done
       
   199 
       
   200 lemma alpha_gen_swap_fun:
       
   201   assumes f_eqvt: "\<And>pi. (pi \<bullet> (f x)) = f (pi \<bullet> x)"
       
   202   assumes a1: "a \<notin> (f x) - bs"
       
   203   and     a2: "b \<notin> (f x) - bs"
       
   204   shows "\<exists>pi. (bs, x) \<approx>gen (op=) f pi ((a \<rightleftharpoons> b) \<bullet> bs, (a \<rightleftharpoons> b) \<bullet> x)"
       
   205   apply(rule_tac x="(a \<rightleftharpoons> b)" in exI)
       
   206   apply(simp add: alpha_gen)
       
   207   apply(simp add: f_eqvt[symmetric] Diff_eqvt[symmetric])
       
   208   apply(simp add: swap_set_not_in[OF a1 a2])
       
   209   apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}")
       
   210   using a1 a2
       
   211   apply(simp add: fresh_star_def fresh_def)
       
   212   apply(blast)
       
   213   apply(simp add: supp_swap)
       
   214   done
       
   215 
       
   216 
       
   217 fun
       
   218   supp_abs_fun
       
   219 where
       
   220   "supp_abs_fun (bs, x) = (supp x) - bs"
       
   221 
       
   222 lemma supp_abs_fun_lemma:
       
   223   assumes a: "x \<approx>abs y" 
       
   224   shows "supp_abs_fun x = supp_abs_fun y"
       
   225   using a
       
   226   apply(induct rule: alpha_abs.induct)
       
   227   apply(simp add: alpha_gen)
       
   228   done
       
   229   
       
   230 quotient_type 'a abs = "(atom set \<times> 'a::pt)" / "alpha_abs"
       
   231   apply(rule equivpI)
       
   232   unfolding reflp_def symp_def transp_def
       
   233   apply(simp_all)
       
   234   (* refl *)
       
   235   apply(clarify)
       
   236   apply(rule_tac x="0" in exI)
       
   237   apply(rule alpha_gen_refl)
       
   238   apply(simp)
       
   239   (* symm *)
       
   240   apply(clarify)
       
   241   apply(rule_tac x="- p" in exI)
       
   242   apply(rule alpha_gen_sym)
       
   243   apply(clarsimp)
       
   244   apply(assumption)
       
   245   (* trans *)
       
   246   apply(clarify)
       
   247   apply(rule_tac x="pa + p" in exI)
       
   248   apply(rule alpha_gen_trans)
       
   249   apply(assumption)
       
   250   apply(assumption)
       
   251   apply(simp)
       
   252   done
       
   253 
       
   254 quotient_definition
       
   255   "Abs::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs"
       
   256 is
       
   257   "Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"
       
   258 
       
   259 lemma [quot_respect]:
       
   260   shows "((op =) ===> (op =) ===> alpha_abs) Pair Pair"
       
   261   apply(clarsimp)
       
   262   apply(rule exI)
       
   263   apply(rule alpha_gen_refl)
       
   264   apply(simp)
       
   265   done
       
   266 
       
   267 lemma [quot_respect]:
       
   268   shows "((op =) ===> alpha_abs ===> alpha_abs) permute permute"
       
   269   apply(clarsimp)
       
   270   apply(rule exI)
       
   271   apply(rule alpha_gen_eqvt)
       
   272   apply(assumption)
       
   273   apply(simp_all add: supp_eqvt)
       
   274   done
       
   275 
       
   276 lemma [quot_respect]:
       
   277   shows "(alpha_abs ===> (op =)) supp_abs_fun supp_abs_fun"
       
   278   apply(simp add: supp_abs_fun_lemma)
       
   279   done
       
   280 
       
   281 lemma abs_induct:
       
   282   "\<lbrakk>\<And>as (x::'a::pt). P (Abs as x)\<rbrakk> \<Longrightarrow> P t"
       
   283   apply(lifting prod.induct[where 'a="atom set" and 'b="'a"])
       
   284   done
       
   285 
       
   286 (* TEST case *)
       
   287 lemmas abs_induct2 = prod.induct[where 'a="atom set" and 'b="'a::pt", quot_lifted]
       
   288 thm abs_induct abs_induct2
       
   289 
       
   290 instantiation abs :: (pt) pt
       
   291 begin
       
   292 
       
   293 quotient_definition
       
   294   "permute_abs::perm \<Rightarrow> ('a::pt abs) \<Rightarrow> 'a abs"
       
   295 is
       
   296   "permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"
       
   297 
       
   298 lemma permute_ABS [simp]:
       
   299   fixes x::"'a::pt"  (* ??? has to be 'a \<dots> 'b does not work *)
       
   300   shows "(p \<bullet> (Abs as x)) = Abs (p \<bullet> as) (p \<bullet> x)"
       
   301   by (lifting permute_prod.simps(1)[where 'a="atom set" and 'b="'a"])
       
   302 
       
   303 instance
       
   304   apply(default)
       
   305   apply(induct_tac [!] x rule: abs_induct)
       
   306   apply(simp_all)
       
   307   done
       
   308 
       
   309 end
   804 end
   310 
   805 
   311 quotient_definition
       
   312   "supp_Abs_fun :: ('a::pt) abs \<Rightarrow> atom \<Rightarrow> bool"
       
   313 is
       
   314   "supp_abs_fun"
       
   315 
       
   316 lemma supp_Abs_fun_simp:
       
   317   shows "supp_Abs_fun (Abs bs x) = (supp x) - bs"
       
   318   by (lifting supp_abs_fun.simps(1))
       
   319 
       
   320 lemma supp_Abs_fun_eqvt [eqvt]:
       
   321   shows "(p \<bullet> supp_Abs_fun x) = supp_Abs_fun (p \<bullet> x)"
       
   322   apply(induct_tac x rule: abs_induct)
       
   323   apply(simp add: supp_Abs_fun_simp supp_eqvt Diff_eqvt)
       
   324   done
       
   325 
       
   326 lemma supp_Abs_fun_fresh:
       
   327   shows "a \<sharp> Abs bs x \<Longrightarrow> a \<sharp> supp_Abs_fun (Abs bs x)"
       
   328   apply(rule fresh_fun_eqvt_app)
       
   329   apply(simp add: eqvts_raw)
       
   330   apply(simp)
       
   331   done
       
   332 
       
   333 lemma Abs_swap:
       
   334   assumes a1: "a \<notin> (supp x) - bs"
       
   335   and     a2: "b \<notin> (supp x) - bs"
       
   336   shows "(Abs bs x) = (Abs ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x))"
       
   337   using a1 a2 by (lifting alpha_abs_swap)
       
   338 
       
   339 lemma Abs_supports:
       
   340   shows "((supp x) - as) supports (Abs as x)"
       
   341   unfolding supports_def
       
   342   apply(clarify)
       
   343   apply(simp (no_asm))
       
   344   apply(subst Abs_swap[symmetric])
       
   345   apply(simp_all)
       
   346   done
       
   347 
       
   348 lemma finite_supp_Abs_subset1:
       
   349   assumes "finite (supp x)"
       
   350   shows "(supp x) - as \<subseteq> supp (Abs as x)"
       
   351   apply(simp add: supp_conv_fresh)
       
   352   apply(auto)
       
   353   apply(drule_tac supp_Abs_fun_fresh)
       
   354   apply(simp only: supp_Abs_fun_simp)
       
   355   apply(simp add: fresh_def)
       
   356   apply(simp add: supp_finite_atom_set assms)
       
   357   done
       
   358 
       
   359 lemma finite_supp_Abs_subset2:
       
   360   assumes "finite (supp x)"
       
   361   shows "supp (Abs as x) \<subseteq> (supp x) - as"
       
   362   apply(rule supp_is_subset)
       
   363   apply(rule Abs_supports)
       
   364   apply(simp add: assms)
       
   365   done
       
   366 
       
   367 lemma finite_supp_Abs:
       
   368   assumes "finite (supp x)"
       
   369   shows "supp (Abs as x) = (supp x) - as"
       
   370   apply(rule_tac subset_antisym)
       
   371   apply(rule finite_supp_Abs_subset2[OF assms])
       
   372   apply(rule finite_supp_Abs_subset1[OF assms])
       
   373   done
       
   374 
       
   375 lemma supp_Abs:
       
   376   fixes x::"'a::fs"
       
   377   shows "supp (Abs as x) = (supp x) - as"
       
   378   apply(rule finite_supp_Abs)
       
   379   apply(simp add: finite_supp)
       
   380   done
       
   381 
       
   382 instance abs :: (fs) fs
       
   383   apply(default)
       
   384   apply(induct_tac x rule: abs_induct)
       
   385   apply(simp add: supp_Abs)
       
   386   apply(simp add: finite_supp)
       
   387   done
       
   388 
       
   389 lemma Abs_fresh_iff:
       
   390   fixes x::"'a::fs"
       
   391   shows "a \<sharp> Abs bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
       
   392   apply(simp add: fresh_def)
       
   393   apply(simp add: supp_Abs)
       
   394   apply(auto)
       
   395   done
       
   396 
       
   397 lemma Abs_eq_iff:
       
   398   shows "Abs bs x = Abs cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op =) supp p (cs, y))"
       
   399   by (lifting alpha_abs.simps(1))
       
   400 
       
   401 
       
   402 
       
   403 (* 
       
   404   below is a construction site for showing that in the
       
   405   single-binder case, the old and new alpha equivalence 
       
   406   coincide
       
   407 *)
       
   408 
       
   409 fun
       
   410   alpha1
       
   411 where
       
   412   "alpha1 (a, x) (b, y) \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y)"
       
   413 
       
   414 notation 
       
   415   alpha1 ("_ \<approx>abs1 _")
       
   416 
       
   417 fun
       
   418   alpha2
       
   419 where
       
   420   "alpha2 (a, x) (b, y) \<longleftrightarrow> (\<exists>c. c \<sharp> (a,b,x,y) \<and> ((c \<rightleftharpoons> a) \<bullet> x) = ((c \<rightleftharpoons> b) \<bullet> y))"
       
   421 
       
   422 notation 
       
   423   alpha2 ("_ \<approx>abs2 _")
       
   424 
       
   425 lemma alpha_old_new:
       
   426   assumes a: "(a, x) \<approx>abs1 (b, y)" "sort_of a = sort_of b"
       
   427   shows "({a}, x) \<approx>abs ({b}, y)"
       
   428 using a
       
   429 apply(simp)
       
   430 apply(erule disjE)
       
   431 apply(simp)
       
   432 apply(rule exI)
       
   433 apply(rule alpha_gen_refl)
       
   434 apply(simp)
       
   435 apply(rule_tac x="(a \<rightleftharpoons> b)" in  exI)
       
   436 apply(simp add: alpha_gen)
       
   437 apply(simp add: fresh_def)
       
   438 apply(rule conjI)
       
   439 apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in  permute_eq_iff[THEN iffD1])
       
   440 apply(rule trans)
       
   441 apply(simp add: Diff_eqvt supp_eqvt)
       
   442 apply(subst swap_set_not_in)
       
   443 back
       
   444 apply(simp)
       
   445 apply(simp)
       
   446 apply(simp add: permute_set_eq)
       
   447 apply(rule conjI)
       
   448 apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in fresh_star_permute_iff[THEN iffD1])
       
   449 apply(simp add: permute_self)
       
   450 apply(simp add: Diff_eqvt supp_eqvt)
       
   451 apply(simp add: permute_set_eq)
       
   452 apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}")
       
   453 apply(simp add: fresh_star_def fresh_def)
       
   454 apply(blast)
       
   455 apply(simp add: supp_swap)
       
   456 apply(simp add: eqvts)
       
   457 done
       
   458 
       
   459 lemma perm_zero:
       
   460   assumes a: "\<forall>x::atom. p \<bullet> x = x"
       
   461   shows "p = 0"
       
   462 using a
       
   463 by (simp add: expand_perm_eq)
       
   464 
       
   465 fun
       
   466   add_perm 
       
   467 where
       
   468   "add_perm [] = 0"
       
   469 | "add_perm ((a, b) # xs) = (a \<rightleftharpoons> b) + add_perm xs"
       
   470 
       
   471 fun
       
   472   elem_perm
       
   473 where
       
   474   "elem_perm [] = {}"
       
   475 | "elem_perm ((a, b) # xs) = {a, b} \<union> elem_perm xs"
       
   476 
       
   477 
       
   478 lemma add_perm_apend:
       
   479   shows "add_perm (xs @ ys) = add_perm xs + add_perm ys"
       
   480 apply(induct xs arbitrary: ys)
       
   481 apply(auto simp add: add_assoc)
       
   482 done
       
   483 
       
   484 lemma perm_list_exists:
       
   485   fixes p::perm
       
   486   shows "\<exists>xs. p = add_perm xs \<and> supp xs \<subseteq> supp p"
       
   487 apply(induct p taking: "\<lambda>p::perm. card (supp p)" rule: measure_induct)
       
   488 apply(rename_tac p)
       
   489 apply(case_tac "supp p = {}")
       
   490 apply(simp)
       
   491 apply(simp add: supp_perm)
       
   492 apply(drule perm_zero)
       
   493 apply(simp)
       
   494 apply(rule_tac x="[]" in exI)
       
   495 apply(simp add: supp_Nil)
       
   496 apply(subgoal_tac "\<exists>x. x \<in> supp p")
       
   497 defer
       
   498 apply(auto)[1]
       
   499 apply(erule exE)
       
   500 apply(drule_tac x="p + (((- p) \<bullet> x) \<rightleftharpoons> x)" in spec)
       
   501 apply(drule mp)
       
   502 defer
       
   503 apply(erule exE)
       
   504 apply(rule_tac x="xs @ [((- p) \<bullet> x, x)]" in exI)
       
   505 apply(simp add: add_perm_apend)
       
   506 apply(erule conjE)
       
   507 apply(drule sym)
       
   508 apply(simp)
       
   509 apply(simp add: expand_perm_eq)
       
   510 apply(simp add: supp_append)
       
   511 apply(simp add: supp_perm supp_Cons supp_Nil supp_Pair supp_atom)
       
   512 apply(rule conjI)
       
   513 prefer 2
       
   514 apply(auto)[1]
       
   515 apply (metis left_minus minus_unique permute_atom_def_raw permute_minus_cancel(2))
       
   516 defer
       
   517 apply(rule psubset_card_mono)
       
   518 apply(simp add: finite_supp)
       
   519 apply(rule psubsetI)
       
   520 defer
       
   521 apply(subgoal_tac "x \<notin> supp (p + (- p \<bullet> x \<rightleftharpoons> x))")
       
   522 apply(blast)
       
   523 apply(simp add: supp_perm)
       
   524 defer
       
   525 apply(auto simp add: supp_perm)[1]
       
   526 apply(case_tac "x = xa")
       
   527 apply(simp)
       
   528 apply(case_tac "((- p) \<bullet> x) = xa")
       
   529 apply(simp)
       
   530 apply(case_tac "sort_of xa = sort_of x")
       
   531 apply(simp)
       
   532 apply(auto)[1]
       
   533 apply(simp)
       
   534 apply(simp)
       
   535 apply(subgoal_tac "{a. p \<bullet> (- p \<bullet> x \<rightleftharpoons> x) \<bullet> a \<noteq> a} \<subseteq> {a. p \<bullet> a \<noteq> a}")
       
   536 apply(blast)
       
   537 apply(auto simp add: supp_perm)[1]
       
   538 apply(case_tac "x = xa")
       
   539 apply(simp)
       
   540 apply(case_tac "((- p) \<bullet> x) = xa")
       
   541 apply(simp)
       
   542 apply(case_tac "sort_of xa = sort_of x")
       
   543 apply(simp)
       
   544 apply(auto)[1]
       
   545 apply(simp)
       
   546 apply(simp)
       
   547 done
       
   548 
       
   549 lemma tt0:
       
   550   fixes p::perm
       
   551   shows "(supp x) \<sharp>* p \<Longrightarrow> \<forall>a \<in> supp p. a \<sharp> x"
       
   552 apply(auto simp add: fresh_star_def supp_perm fresh_def)
       
   553 done
       
   554 
       
   555 lemma uu0:
       
   556   shows "(\<forall>a \<in> elem_perm xs. a \<sharp> x) \<Longrightarrow> (add_perm xs \<bullet> x) = x"
       
   557 apply(induct xs rule: add_perm.induct)
       
   558 apply(simp)
       
   559 apply(simp add: swap_fresh_fresh)
       
   560 done
       
   561 
       
   562 lemma yy0:
       
   563   fixes xs::"(atom \<times> atom) list"
       
   564   shows "supp xs = elem_perm xs"
       
   565 apply(induct xs rule: elem_perm.induct)
       
   566 apply(auto simp add: supp_Nil supp_Cons supp_Pair supp_atom)
       
   567 done
       
   568 
       
   569 lemma tt1:
       
   570   shows "(supp x) \<sharp>* p \<Longrightarrow> p \<bullet> x = x"
       
   571 apply(drule tt0)
       
   572 apply(subgoal_tac "\<exists>xs. p = add_perm xs \<and> supp xs \<subseteq> supp p")
       
   573 prefer 2
       
   574 apply(rule perm_list_exists)
       
   575 apply(erule exE)
       
   576 apply(simp only: yy0)
       
   577 apply(rule uu0)
       
   578 apply(auto)
       
   579 done
       
   580 
       
   581 
       
   582 lemma perm_induct_test:
       
   583   fixes P :: "perm => bool"
       
   584   assumes fin: "finite (supp p)" 
       
   585   assumes zero: "P 0"
       
   586   assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)"
       
   587   assumes plus: "\<And>p1 p2. \<lbrakk>supp p1 \<inter> supp p2 = {}; P p1; P p2\<rbrakk> \<Longrightarrow> P (p1 + p2)"
       
   588   shows "P p"
       
   589 using fin
       
   590 apply(induct F\<equiv>"supp p" arbitrary: p rule: finite_induct)
       
   591 apply(simp add: supp_perm)
       
   592 apply(drule perm_zero)
       
   593 apply(simp add: zero)
       
   594 apply(rotate_tac 3)
       
   595 oops
       
   596 
       
   597 lemma ii:
       
   598   assumes "\<forall>x \<in> A. p \<bullet> x = x"
       
   599   shows "p \<bullet> A = A"
       
   600 using assms
       
   601 apply(auto)
       
   602 apply (metis Collect_def Collect_mem_eq Int_absorb assms eqvt_bound inf_Int_eq mem_def mem_permute_iff)
       
   603 apply (metis Collect_def Collect_mem_eq Int_absorb assms eqvt_apply eqvt_bound eqvt_lambda inf_Int_eq mem_def mem_permute_iff permute_minus_cancel(2) permute_pure)
       
   604 done
       
   605 
       
   606 
       
   607 
       
   608 lemma alpha_abs_Pair:
       
   609   shows "(bs, (x1, x2)) \<approx>gen (\<lambda>(x1,x2) (y1,y2). x1=y1 \<and> x2=y2) (\<lambda>(x,y). supp x \<union> supp y) p (cs, (y1, y2))
       
   610          \<longleftrightarrow> ((bs, x1) \<approx>gen (op=) supp p (cs, y1) \<and> (bs, x2) \<approx>gen (op=) supp p (cs, y2))"         
       
   611   apply(simp add: alpha_gen)
       
   612   apply(simp add: fresh_star_def)
       
   613   apply(simp add: ball_Un Un_Diff)
       
   614   apply(rule iffI)
       
   615   apply(simp)
       
   616   defer
       
   617   apply(simp)
       
   618   apply(rule conjI)
       
   619   apply(clarify)
       
   620   apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
       
   621   apply(rule sym)
       
   622   apply(rule ii)
       
   623   apply(simp add: fresh_def supp_perm)
       
   624   apply(clarify)
       
   625   apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
       
   626   apply(simp add: fresh_def supp_perm)
       
   627   apply(rule sym)
       
   628   apply(rule ii)
       
   629   apply(simp)
       
   630   done
       
   631 
       
   632 
       
   633 lemma yy:
       
   634   assumes "S1 - {x} = S2 - {x}" "x \<in> S1" "x \<in> S2"
       
   635   shows "S1 = S2"
       
   636 using assms
       
   637 apply (metis insert_Diff_single insert_absorb)
       
   638 done
       
   639 
       
   640 lemma kk:
       
   641   assumes a: "p \<bullet> x = y"
       
   642   shows "\<forall>a \<in> supp x. (p \<bullet> a) \<in> supp y"
       
   643 using a
       
   644 apply(auto)
       
   645 apply(rule_tac p="- p" in permute_boolE)
       
   646 apply(simp add: mem_eqvt supp_eqvt)
       
   647 done
       
   648 
       
   649 lemma ww:
       
   650   assumes "a \<notin> supp x" "b \<in> supp x" "a \<noteq> b" "sort_of a = sort_of b"
       
   651   shows "((a \<rightleftharpoons> b) \<bullet> x) \<noteq> x"
       
   652 apply(subgoal_tac "(supp x) supports x")
       
   653 apply(simp add: supports_def)
       
   654 using assms
       
   655 apply -
       
   656 apply(drule_tac x="a" in spec)
       
   657 defer
       
   658 apply(rule supp_supports)
       
   659 apply(auto)
       
   660 apply(rotate_tac 1)
       
   661 apply(drule_tac p="(a \<rightleftharpoons> b)" in permute_boolI)
       
   662 apply(simp add: mem_eqvt supp_eqvt)
       
   663 done
       
   664 
       
   665 lemma alpha_abs_sym:
       
   666   assumes a: "({a}, x) \<approx>abs ({b}, y)"
       
   667   shows "({b}, y) \<approx>abs ({a}, x)"
       
   668 using a
       
   669 apply(simp)
       
   670 apply(erule exE)
       
   671 apply(rule_tac x="- p" in exI)
       
   672 apply(simp add: alpha_gen)
       
   673 apply(simp add: fresh_star_def fresh_minus_perm)
       
   674 apply (metis permute_minus_cancel(2))
       
   675 done
       
   676 
       
   677 lemma alpha_abs_trans:
       
   678   assumes a: "({a1}, x1) \<approx>abs ({a2}, x2)"
       
   679   assumes b: "({a2}, x2) \<approx>abs ({a3}, x3)"
       
   680   shows "({a1}, x1) \<approx>abs ({a3}, x3)"
       
   681 using a b
       
   682 apply(simp)
       
   683 apply(erule exE)+
       
   684 apply(rule_tac x="pa + p" in exI)
       
   685 apply(simp add: alpha_gen)
       
   686 apply(simp add: fresh_star_def fresh_plus_perm)
       
   687 done
       
   688 
       
   689 lemma alpha_equal:
       
   690   assumes a: "({a}, x) \<approx>abs ({a}, y)" 
       
   691   shows "(a, x) \<approx>abs1 (a, y)"
       
   692 using a
       
   693 apply(simp)
       
   694 apply(erule exE)
       
   695 apply(simp add: alpha_gen)
       
   696 apply(erule conjE)+
       
   697 apply(case_tac "a \<notin> supp x")
       
   698 apply(simp)
       
   699 apply(subgoal_tac "supp x \<sharp>* p")
       
   700 apply(drule tt1)
       
   701 apply(simp)
       
   702 apply(simp)
       
   703 apply(simp)
       
   704 apply(case_tac "a \<notin> supp y")
       
   705 apply(simp)
       
   706 apply(drule tt1)
       
   707 apply(clarify)
       
   708 apply(simp (no_asm_use))
       
   709 apply(simp)
       
   710 apply(simp)
       
   711 apply(drule yy)
       
   712 apply(simp)
       
   713 apply(simp)
       
   714 apply(simp)
       
   715 apply(case_tac "a \<sharp> p")
       
   716 apply(subgoal_tac "supp y \<sharp>* p")
       
   717 apply(drule tt1)
       
   718 apply(clarify)
       
   719 apply(simp (no_asm_use))
       
   720 apply(metis)
       
   721 apply(auto simp add: fresh_star_def)[1]
       
   722 apply(frule_tac kk)
       
   723 apply(drule_tac x="a" in bspec)
       
   724 apply(simp)
       
   725 apply(simp add: fresh_def)
       
   726 apply(simp add: supp_perm)
       
   727 apply(subgoal_tac "((p \<bullet> a) \<sharp> p)")
       
   728 apply(simp add: fresh_def supp_perm)
       
   729 apply(simp add: fresh_star_def)
       
   730 done
       
   731 
       
   732 lemma alpha_unequal:
       
   733   assumes a: "({a}, x) \<approx>abs ({b}, y)" "sort_of a = sort_of b" "a \<noteq> b"
       
   734   shows "(a, x) \<approx>abs1 (b, y)"
       
   735 using a
       
   736 apply -
       
   737 apply(subgoal_tac "a \<notin> supp x - {a}")
       
   738 apply(subgoal_tac "b \<notin> supp x - {a}")
       
   739 defer
       
   740 apply(simp add: alpha_gen)
       
   741 apply(simp)
       
   742 apply(drule_tac alpha_abs_swap)
       
   743 apply(assumption)
       
   744 apply(simp only: insert_eqvt empty_eqvt swap_atom_simps)
       
   745 apply(drule alpha_abs_sym)
       
   746 apply(rotate_tac 4)
       
   747 apply(drule_tac alpha_abs_trans)
       
   748 apply(assumption)
       
   749 apply(drule alpha_equal)
       
   750 apply(simp)
       
   751 apply(rule_tac p="(a \<rightleftharpoons> b)" in permute_boolE)
       
   752 apply(simp add: fresh_eqvt)
       
   753 apply(simp add: fresh_def)
       
   754 done
       
   755 
       
   756 lemma alpha_new_old:
       
   757   assumes a: "({a}, x) \<approx>abs ({b}, y)" "sort_of a = sort_of b" 
       
   758   shows "(a, x) \<approx>abs1 (b, y)"
       
   759 using a
       
   760 apply(case_tac "a=b")
       
   761 apply(simp only: alpha_equal)
       
   762 apply(drule alpha_unequal)
       
   763 apply(simp)
       
   764 apply(simp)
       
   765 apply(simp)
       
   766 done
       
   767 
       
   768 fun
       
   769   distinct_perms 
       
   770 where
       
   771   "distinct_perms [] = True"
       
   772 | "distinct_perms (p # ps) = (supp p \<inter> supp ps = {} \<and> distinct_perms ps)"
       
   773 
       
   774 (* support of concrete atom sets *)
       
   775 
       
   776 lemma supp_atom_image:
       
   777   fixes as::"'a::at_base set"
       
   778   shows "supp (atom ` as) = supp as"
       
   779 apply(simp add: supp_def)
       
   780 apply(simp add: image_eqvt)
       
   781 apply(simp add: atom_eqvt_raw)
       
   782 apply(simp add: atom_image_cong)
       
   783 done
       
   784 
       
   785 lemma swap_atom_image_fresh: "\<lbrakk>a \<sharp> atom ` (fn :: ('a :: at_base set)); b \<sharp> atom ` fn\<rbrakk> \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> fn = fn"
       
   786   apply (simp add: fresh_def)
       
   787   apply (simp add: supp_atom_image)
       
   788   apply (fold fresh_def)
       
   789   apply (simp add: swap_fresh_fresh)
       
   790   done
       
   791 
       
   792 (* TODO: The following lemmas can be moved somewhere... *)
       
   793 lemma split_rsp2[quot_respect]: "((R1 ===> R2 ===> prod_rel R1 R2 ===> op =) ===>
       
   794   prod_rel R1 R2 ===> prod_rel R1 R2 ===> op =) split split"
       
   795   by auto
       
   796 
       
   797 lemma split_prs2[quot_preserve]:
       
   798   assumes q1: "Quotient R1 Abs1 Rep1"
       
   799   and q2: "Quotient R2 Abs2 Rep2"
       
   800   shows "((Abs1 ---> Abs2 ---> prod_fun Abs1 Abs2 ---> id) ---> prod_fun Rep1 Rep2 ---> prod_fun Rep1 Rep2 ---> id) split = split"
       
   801   by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
       
   802 
       
   803 lemma alpha_gen2:
       
   804   "(bs, x1, x2) \<approx>gen (\<lambda>(x1, y1) (x2, y2). R1 x1 x2 \<and> R2 y1 y2) (\<lambda>(a, b). f1 a \<union> f2 b) pi (cs, y1, y2) =
       
   805   (f1 x1 \<union> f2 x2 - bs = f1 y1 \<union> f2 y2 - cs \<and> (f1 x1 \<union> f2 x2 - bs) \<sharp>* pi \<and> R1 (pi \<bullet> x1) y1 \<and> R2 (pi \<bullet> x2) y2
       
   806   \<and> pi \<bullet> bs = cs)"
       
   807 by (simp add: alpha_gen)
       
   808 
       
   809 
       
   810 end
       
   811