|
1 theory Tacs |
|
2 imports Main |
|
3 begin |
|
4 |
|
5 (* General not-nominal/quotient functionality useful for proving *) |
|
6 |
|
7 (* A version of case_rule_tac that takes more exhaust rules *) |
|
8 ML {* |
|
9 fun case_rules_tac ctxt0 s rules i st = |
|
10 let |
|
11 val (_, ctxt) = Variable.focus_subgoal i st ctxt0; |
|
12 val ty = fastype_of (ProofContext.read_term_schematic ctxt s) |
|
13 fun exhaust_ty thm = fastype_of (hd (Induct.vars_of (Thm.term_of (Thm.cprem_of thm 1)))); |
|
14 val ty_rules = filter (fn x => exhaust_ty x = ty) rules; |
|
15 in |
|
16 InductTacs.case_rule_tac ctxt0 s (hd ty_rules) i st |
|
17 end |
|
18 *} |
|
19 |
|
20 ML {* |
|
21 fun mk_conjl props = |
|
22 fold (fn a => fn b => |
|
23 if a = @{term True} then b else |
|
24 if b = @{term True} then a else |
|
25 HOLogic.mk_conj (a, b)) (rev props) @{term True}; |
|
26 *} |
|
27 |
|
28 ML {* |
|
29 val split_conj_tac = REPEAT o etac conjE THEN' TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) |
|
30 *} |
|
31 |
|
32 (* Given function for buildng a goal for an input, prepares a |
|
33 one common goals for all the inputs and proves it by induction |
|
34 together *) |
|
35 ML {* |
|
36 fun prove_by_induct tys build_goal ind utac inputs ctxt = |
|
37 let |
|
38 val names = Datatype_Prop.make_tnames tys; |
|
39 val (names', ctxt') = Variable.variant_fixes names ctxt; |
|
40 val frees = map Free (names' ~~ tys); |
|
41 val (gls_lists, ctxt'') = fold_map (build_goal (tys ~~ frees)) inputs ctxt'; |
|
42 val gls = flat gls_lists; |
|
43 fun trm_gls_map t = filter (exists_subterm (fn s => s = t)) gls; |
|
44 val trm_gl_lists = map trm_gls_map frees; |
|
45 val trm_gl_insts = map2 (fn n => fn l => [NONE, if l = [] then NONE else SOME n]) names' trm_gl_lists |
|
46 val trm_gls = map mk_conjl trm_gl_lists; |
|
47 val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj trm_gls); |
|
48 fun tac {context,...} = ( |
|
49 InductTacs.induct_rules_tac context [(flat trm_gl_insts)] [ind] |
|
50 THEN_ALL_NEW split_conj_tac THEN_ALL_NEW utac) 1 |
|
51 val th_loc = Goal.prove ctxt'' [] [] gl tac |
|
52 val ths_loc = HOLogic.conj_elims th_loc |
|
53 val ths = Variable.export ctxt'' ctxt ths_loc |
|
54 in |
|
55 filter (fn x => not (prop_of x = prop_of @{thm TrueI})) ths |
|
56 end |
|
57 *} |
|
58 |
|
59 (* An induction for a single relation is "R x y \<Longrightarrow> P x y" |
|
60 but for multiple relations is "(R1 x y \<longrightarrow> P x y) \<and> (R2 a b \<longrightarrow> P2 a b)" *) |
|
61 ML {* |
|
62 fun rel_indtac induct = (rtac impI THEN' etac induct) ORELSE' rtac induct |
|
63 *} |
|
64 |
|
65 ML {* |
|
66 fun prove_by_rel_induct alphas build_goal ind utac inputs ctxt = |
|
67 let |
|
68 val tys = map (domain_type o fastype_of) alphas; |
|
69 val names = Datatype_Prop.make_tnames tys; |
|
70 val (namesl, ctxt') = Variable.variant_fixes names ctxt; |
|
71 val (namesr, ctxt'') = Variable.variant_fixes names ctxt'; |
|
72 val freesl = map Free (namesl ~~ tys); |
|
73 val freesr = map Free (namesr ~~ tys); |
|
74 val (gls_lists, ctxt'') = fold_map (build_goal (tys ~~ (freesl ~~ freesr))) inputs ctxt''; |
|
75 val gls = flat gls_lists; |
|
76 fun trm_gls_map t = filter (exists_subterm (fn s => s = t)) gls; |
|
77 val trm_gl_lists = map trm_gls_map freesl; |
|
78 val trm_gls = map mk_conjl trm_gl_lists; |
|
79 val pgls = map |
|
80 (fn ((alpha, gl), (l, r)) => HOLogic.mk_imp (alpha $ l $ r, gl)) |
|
81 ((alphas ~~ trm_gls) ~~ (freesl ~~ freesr)) |
|
82 val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj pgls); |
|
83 fun tac {context,...} = (rel_indtac ind THEN_ALL_NEW split_conj_tac THEN_ALL_NEW |
|
84 TRY o rtac @{thm TrueI} THEN_ALL_NEW utac context) 1 |
|
85 val th_loc = Goal.prove ctxt'' [] [] gl tac |
|
86 val ths_loc = HOLogic.conj_elims th_loc |
|
87 val ths = Variable.export ctxt'' ctxt ths_loc |
|
88 in |
|
89 filter (fn x => not (prop_of x = prop_of @{thm TrueI})) ths |
|
90 end |
|
91 *} |
|
92 (* Code for transforming an inductive relation to a function *) |
|
93 ML {* |
|
94 fun rel_inj_tac dist_inj intrs elims = |
|
95 SOLVED' (asm_full_simp_tac (HOL_ss addsimps intrs)) ORELSE' |
|
96 (rtac @{thm iffI} THEN' RANGE [ |
|
97 (eresolve_tac elims THEN_ALL_NEW |
|
98 asm_full_simp_tac (HOL_ss addsimps dist_inj) |
|
99 ), |
|
100 asm_full_simp_tac (HOL_ss addsimps intrs)]) |
|
101 *} |
|
102 |
|
103 ML {* |
|
104 fun build_rel_inj_gl thm = |
|
105 let |
|
106 val prop = prop_of thm; |
|
107 val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop); |
|
108 val hyps = map HOLogic.dest_Trueprop (Logic.strip_imp_prems prop); |
|
109 fun list_conj l = foldr1 HOLogic.mk_conj l; |
|
110 in |
|
111 if hyps = [] then concl |
|
112 else HOLogic.mk_eq (concl, list_conj hyps) |
|
113 end; |
|
114 *} |
|
115 |
|
116 ML {* |
|
117 fun build_rel_inj intrs dist_inj elims ctxt = |
|
118 let |
|
119 val ((_, thms_imp), ctxt') = Variable.import false intrs ctxt; |
|
120 val gls = map (HOLogic.mk_Trueprop o build_rel_inj_gl) thms_imp; |
|
121 fun tac _ = rel_inj_tac dist_inj intrs elims 1; |
|
122 val thms = map (fn gl => Goal.prove ctxt' [] [] gl tac) gls; |
|
123 in |
|
124 Variable.export ctxt' ctxt thms |
|
125 end |
|
126 *} |
|
127 |
|
128 end |
|
129 |