Nominal/Abs.thy
changeset 2124 a17b25cb94a6
parent 2104 2205b572bc9b
child 2296 45a69c9cc4cc
equal deleted inserted replaced
2123:2f39ce2aba6c 2124:a17b25cb94a6
   841   by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
   841   by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
   842 
   842 
   843 lemma [mono]: "A <= B \<Longrightarrow> C <= D ==> prod_rel A C <= prod_rel B D"
   843 lemma [mono]: "A <= B \<Longrightarrow> C <= D ==> prod_rel A C <= prod_rel B D"
   844   by auto
   844   by auto
   845 
   845 
   846 lemma [eqvt]: "(p \<bullet> prod_rel A B x y) = prod_rel (p \<bullet> A) (p \<bullet> B) (p \<bullet> x) (p \<bullet> y)"
   846 lemma [eqvt]: 
   847   by (simp, perm_simp) (rule refl)
   847   shows "p \<bullet> prod_rel A B x y = prod_rel (p \<bullet> A) (p \<bullet> B) (p \<bullet> x) (p \<bullet> y)"
   848 
   848   unfolding prod_rel.simps
   849 lemma [eqvt]: "(p \<bullet> prod_fv A B (x, y)) = prod_fv (p \<bullet> A) (p \<bullet> B) (p \<bullet> x, p \<bullet> y)"
   849   by (perm_simp) (rule refl)
   850   by (simp, perm_simp) (rule refl)
   850 
       
   851 lemma [eqvt]: 
       
   852   shows "p \<bullet> prod_fv A B (x, y) = prod_fv (p \<bullet> A) (p \<bullet> B) (p \<bullet> x, p \<bullet> y)"
       
   853   unfolding prod_fv.simps
       
   854   by (perm_simp) (rule refl)
   851 
   855 
   852 end
   856 end
   853 
   857