15 in |
15 in |
16 InductTacs.case_rule_tac ctxt0 s (hd ty_rules) i st |
16 InductTacs.case_rule_tac ctxt0 s (hd ty_rules) i st |
17 end |
17 end |
18 *} |
18 *} |
19 |
19 |
20 ML {* |
|
21 fun mk_conjl props = |
|
22 fold (fn a => fn b => |
|
23 if a = @{term True} then b else |
|
24 if b = @{term True} then a else |
|
25 HOLogic.mk_conj (a, b)) (rev props) @{term True}; |
|
26 *} |
|
27 |
20 |
28 ML {* |
|
29 val split_conj_tac = REPEAT o etac conjE THEN' TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) |
|
30 *} |
|
31 |
|
32 (* Given function for buildng a goal for an input, prepares a |
|
33 one common goals for all the inputs and proves it by induction |
|
34 together *) |
|
35 ML {* |
|
36 fun prove_by_induct tys build_goal ind utac inputs ctxt = |
|
37 let |
|
38 val names = Datatype_Prop.make_tnames tys; |
|
39 val (names', ctxt') = Variable.variant_fixes names ctxt; |
|
40 val frees = map Free (names' ~~ tys); |
|
41 val (gls_lists, ctxt'') = fold_map (build_goal (tys ~~ frees)) inputs ctxt'; |
|
42 val gls = flat gls_lists; |
|
43 fun trm_gls_map t = filter (exists_subterm (fn s => s = t)) gls; |
|
44 val trm_gl_lists = map trm_gls_map frees; |
|
45 val trm_gl_insts = map2 (fn n => fn l => [NONE, if l = [] then NONE else SOME n]) names' trm_gl_lists |
|
46 val trm_gls = map mk_conjl trm_gl_lists; |
|
47 val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj trm_gls); |
|
48 fun tac {context,...} = ( |
|
49 InductTacs.induct_rules_tac context [(flat trm_gl_insts)] [ind] |
|
50 THEN_ALL_NEW split_conj_tac THEN_ALL_NEW utac) 1 |
|
51 val th_loc = Goal.prove ctxt'' [] [] gl tac |
|
52 val ths_loc = HOLogic.conj_elims th_loc |
|
53 val ths = Variable.export ctxt'' ctxt ths_loc |
|
54 in |
|
55 filter (fn x => not (prop_of x = prop_of @{thm TrueI})) ths |
|
56 end |
|
57 *} |
|
58 |
21 |
59 ML {* |
22 ML {* |
60 fun prove_by_rel_induct alphas build_goal ind utac inputs ctxt = |
23 fun prove_by_rel_induct alphas build_goal ind utac inputs ctxt = |
61 let |
24 let |
62 val tys = map (domain_type o fastype_of) alphas; |
25 val tys = map (domain_type o fastype_of) alphas; |
79 val th_loc = Goal.prove ctxt'' [] [] gl tac |
42 val th_loc = Goal.prove ctxt'' [] [] gl tac |
80 val ths_loc = HOLogic.conj_elims th_loc |
43 val ths_loc = HOLogic.conj_elims th_loc |
81 val ths = Variable.export ctxt'' ctxt ths_loc |
44 val ths = Variable.export ctxt'' ctxt ths_loc |
82 in |
45 in |
83 filter (fn x => not (prop_of x = prop_of @{thm TrueI})) ths |
46 filter (fn x => not (prop_of x = prop_of @{thm TrueI})) ths |
84 end |
|
85 *} |
|
86 (* Code for transforming an inductive relation to a function *) |
|
87 ML {* |
|
88 fun rel_inj_tac dist_inj intrs elims = |
|
89 SOLVED' (asm_full_simp_tac (HOL_ss addsimps intrs)) ORELSE' |
|
90 (rtac @{thm iffI} THEN' RANGE [ |
|
91 (eresolve_tac elims THEN_ALL_NEW |
|
92 asm_full_simp_tac (HOL_ss addsimps dist_inj) |
|
93 ), |
|
94 asm_full_simp_tac (HOL_ss addsimps intrs)]) |
|
95 *} |
|
96 |
|
97 ML {* |
|
98 fun build_rel_inj_gl thm = |
|
99 let |
|
100 val prop = prop_of thm; |
|
101 val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop); |
|
102 val hyps = map HOLogic.dest_Trueprop (Logic.strip_imp_prems prop); |
|
103 fun list_conj l = foldr1 HOLogic.mk_conj l; |
|
104 in |
|
105 if hyps = [] then concl |
|
106 else HOLogic.mk_eq (concl, list_conj hyps) |
|
107 end; |
|
108 *} |
|
109 |
|
110 ML {* |
|
111 fun build_rel_inj intrs dist_inj elims ctxt = |
|
112 let |
|
113 val ((_, thms_imp), ctxt') = Variable.import false intrs ctxt; |
|
114 val gls = map (HOLogic.mk_Trueprop o build_rel_inj_gl) thms_imp; |
|
115 fun tac _ = rel_inj_tac dist_inj intrs elims 1; |
|
116 val thms = map (fn gl => Goal.prove ctxt' [] [] gl tac) gls; |
|
117 in |
|
118 Variable.export ctxt' ctxt thms |
|
119 end |
47 end |
120 *} |
48 *} |
121 |
49 |
122 ML {* |
50 ML {* |
123 fun repeat_mp thm = repeat_mp (mp OF [thm]) handle THM _ => thm |
51 fun repeat_mp thm = repeat_mp (mp OF [thm]) handle THM _ => thm |