Attic/Quot/quotient_typ.ML
changeset 1260 9df6144e281b
parent 1166 e860d8767d09
child 1437 45fb38a2e3f7
equal deleted inserted replaced
1259:db158e995bfc 1260:9df6144e281b
       
     1 (*  Title:      quotient_typ.thy
       
     2     Author:     Cezary Kaliszyk and Christian Urban
       
     3 
       
     4     Definition of a quotient type.
       
     5 
       
     6 *)
       
     7 
       
     8 signature QUOTIENT_TYPE =
       
     9 sig
       
    10   val quotient_type: ((string list * binding * mixfix) * (typ * term)) list
       
    11     -> Proof.context -> Proof.state
       
    12 
       
    13   val quotient_type_cmd: ((((string list * binding) * mixfix) * string) * string) list
       
    14     -> Proof.context -> Proof.state
       
    15 end;
       
    16 
       
    17 structure Quotient_Type: QUOTIENT_TYPE =
       
    18 struct
       
    19 
       
    20 open Quotient_Info;
       
    21 
       
    22 (* wrappers for define, note, Attrib.internal and theorem_i *)
       
    23 fun define (name, mx, rhs) lthy =
       
    24 let
       
    25   val ((rhs, (_ , thm)), lthy') =
       
    26      Local_Theory.define ((name, mx), (Attrib.empty_binding, rhs)) lthy
       
    27 in
       
    28   ((rhs, thm), lthy')
       
    29 end
       
    30 
       
    31 fun note (name, thm, attrs) lthy =
       
    32 let
       
    33   val ((_,[thm']), lthy') = Local_Theory.note ((name, attrs), [thm]) lthy
       
    34 in
       
    35   (thm', lthy')
       
    36 end
       
    37 
       
    38 fun intern_attr at = Attrib.internal (K at)
       
    39 
       
    40 fun theorem after_qed goals ctxt =
       
    41 let
       
    42   val goals' = map (rpair []) goals
       
    43   fun after_qed' thms = after_qed (the_single thms)
       
    44 in
       
    45   Proof.theorem_i NONE after_qed' [goals'] ctxt
       
    46 end
       
    47 
       
    48 
       
    49 
       
    50 (*** definition of quotient types ***)
       
    51 
       
    52 val mem_def1 = @{lemma "y : S ==> S y" by (simp add: mem_def)}
       
    53 val mem_def2 = @{lemma "S y ==> y : S" by (simp add: mem_def)}
       
    54 
       
    55 (* constructs the term lambda (c::rty => bool). EX (x::rty). c = rel x *)
       
    56 fun typedef_term rel rty lthy =
       
    57 let
       
    58   val [x, c] =
       
    59     [("x", rty), ("c", HOLogic.mk_setT rty)]
       
    60     |> Variable.variant_frees lthy [rel]
       
    61     |> map Free
       
    62 in
       
    63   lambda c (HOLogic.exists_const rty $
       
    64      lambda x (HOLogic.mk_eq (c, (rel $ x))))
       
    65 end
       
    66 
       
    67 
       
    68 (* makes the new type definitions and proves non-emptyness *)
       
    69 fun typedef_make (vs, qty_name, mx, rel, rty) lthy =
       
    70 let
       
    71   val typedef_tac =
       
    72      EVERY1 (map rtac [@{thm exI}, mem_def2, @{thm exI}, @{thm refl}])
       
    73 in
       
    74   Local_Theory.theory_result
       
    75     (Typedef.add_typedef false NONE
       
    76        (qty_name, vs, mx)
       
    77           (typedef_term rel rty lthy)
       
    78              NONE typedef_tac) lthy
       
    79 end
       
    80 
       
    81 
       
    82 (* tactic to prove the quot_type theorem for the new type *)
       
    83 fun typedef_quot_type_tac equiv_thm (typedef_info: Typedef.info) =
       
    84 let
       
    85   val rep_thm = #Rep typedef_info RS mem_def1
       
    86   val rep_inv = #Rep_inverse typedef_info
       
    87   val abs_inv = mem_def2 RS #Abs_inverse typedef_info
       
    88   val rep_inj = #Rep_inject typedef_info
       
    89 in
       
    90   (rtac @{thm quot_type.intro} THEN' RANGE [
       
    91     rtac equiv_thm,
       
    92     rtac rep_thm,
       
    93     rtac rep_inv,
       
    94     EVERY' (map rtac [abs_inv, @{thm exI}, @{thm refl}]),
       
    95     rtac rep_inj]) 1
       
    96 end
       
    97 
       
    98 
       
    99 (* proves the quot_type theorem for the new type *)
       
   100 fun typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy =
       
   101 let
       
   102   val quot_type_const = Const (@{const_name "quot_type"}, dummyT)
       
   103   val goal =
       
   104     HOLogic.mk_Trueprop (quot_type_const $ rel $ abs $ rep)
       
   105     |> Syntax.check_term lthy
       
   106 in
       
   107   Goal.prove lthy [] [] goal
       
   108     (K (typedef_quot_type_tac equiv_thm typedef_info))
       
   109 end
       
   110 
       
   111 (* proves the quotient theorem for the new type *)
       
   112 fun typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_type_thm) lthy =
       
   113 let
       
   114   val quotient_const = Const (@{const_name "Quotient"}, dummyT)
       
   115   val goal =
       
   116     HOLogic.mk_Trueprop (quotient_const $ rel $ abs $ rep)
       
   117     |> Syntax.check_term lthy
       
   118 
       
   119   val typedef_quotient_thm_tac =
       
   120     EVERY1 [
       
   121       K (rewrite_goals_tac [abs_def, rep_def]),
       
   122       rtac @{thm quot_type.Quotient},
       
   123       rtac quot_type_thm]
       
   124 in
       
   125   Goal.prove lthy [] [] goal
       
   126     (K typedef_quotient_thm_tac)
       
   127 end
       
   128 
       
   129 
       
   130 (* main function for constructing a quotient type *)
       
   131 fun mk_quotient_type (((vs, qty_name, mx), (rty, rel)), equiv_thm) lthy =
       
   132 let
       
   133   (* generates the typedef *)
       
   134   val ((qty_full_name, typedef_info), lthy1) = typedef_make (vs, qty_name, mx, rel, rty) lthy
       
   135 
       
   136   (* abs and rep functions from the typedef *)
       
   137   val Abs_ty = #abs_type typedef_info
       
   138   val Rep_ty = #rep_type typedef_info
       
   139   val Abs_name = #Abs_name typedef_info
       
   140   val Rep_name = #Rep_name typedef_info
       
   141   val Abs_const = Const (Abs_name, Rep_ty --> Abs_ty)
       
   142   val Rep_const = Const (Rep_name, Abs_ty --> Rep_ty)
       
   143 
       
   144   (* more useful abs and rep definitions *)
       
   145   val abs_const = Const (@{const_name "quot_type.abs"}, dummyT )
       
   146   val rep_const = Const (@{const_name "quot_type.rep"}, dummyT )
       
   147   val abs_trm = Syntax.check_term lthy1 (abs_const $ rel $ Abs_const)
       
   148   val rep_trm = Syntax.check_term lthy1 (rep_const $ Rep_const)
       
   149   val abs_name = Binding.prefix_name "abs_" qty_name
       
   150   val rep_name = Binding.prefix_name "rep_" qty_name
       
   151 
       
   152   val ((abs, abs_def), lthy2) = define (abs_name, NoSyn, abs_trm) lthy1
       
   153   val ((rep, rep_def), lthy3) = define (rep_name, NoSyn, rep_trm) lthy2
       
   154 
       
   155   (* quot_type theorem *)
       
   156   val quot_thm = typedef_quot_type_thm (rel, Abs_const, Rep_const, equiv_thm, typedef_info) lthy3
       
   157 
       
   158   (* quotient theorem *)
       
   159   val quotient_thm = typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_thm) lthy3
       
   160   val quotient_thm_name = Binding.prefix_name "Quotient_" qty_name
       
   161 
       
   162   (* name equivalence theorem *)
       
   163   val equiv_thm_name = Binding.suffix_name "_equivp" qty_name
       
   164 
       
   165   (* storing the quot-info *)
       
   166   fun qinfo phi = transform_quotdata phi
       
   167     {qtyp = Abs_ty, rtyp = rty, equiv_rel = rel, equiv_thm = equiv_thm}
       
   168   val lthy4 = Local_Theory.declaration true
       
   169     (fn phi => quotdata_update_gen qty_full_name (qinfo phi)) lthy3
       
   170 in
       
   171   lthy4
       
   172   |> note (quotient_thm_name, quotient_thm, [intern_attr quotient_rules_add])
       
   173   ||>> note (equiv_thm_name, equiv_thm, [intern_attr equiv_rules_add])
       
   174 end
       
   175 
       
   176 
       
   177 (* sanity checks for the quotient type specifications *)
       
   178 fun sanity_check ((vs, qty_name, _), (rty, rel)) =
       
   179 let
       
   180   val rty_tfreesT = map fst (Term.add_tfreesT rty [])
       
   181   val rel_tfrees = map fst (Term.add_tfrees rel [])
       
   182   val rel_frees = map fst (Term.add_frees rel [])
       
   183   val rel_vars = Term.add_vars rel []
       
   184   val rel_tvars = Term.add_tvars rel []
       
   185   val qty_str = Binding.str_of qty_name ^ ": "
       
   186 
       
   187   val illegal_rel_vars =
       
   188     if null rel_vars andalso null rel_tvars then []
       
   189     else [qty_str ^ "illegal schematic variable(s) in the relation."]
       
   190 
       
   191   val dup_vs =
       
   192     (case duplicates (op =) vs of
       
   193        [] => []
       
   194      | dups => [qty_str ^ "duplicate type variable(s) on the lhs: " ^ commas_quote dups])
       
   195 
       
   196   val extra_rty_tfrees =
       
   197     (case subtract (op =) vs rty_tfreesT of
       
   198        [] => []
       
   199      | extras => [qty_str ^ "extra type variable(s) on the lhs: " ^ commas_quote extras])
       
   200 
       
   201   val extra_rel_tfrees =
       
   202     (case subtract (op =) vs rel_tfrees of
       
   203        [] => []
       
   204      | extras => [qty_str ^ "extra type variable(s) in the relation: " ^ commas_quote extras])
       
   205 
       
   206   val illegal_rel_frees =
       
   207     (case rel_frees of
       
   208       [] => []
       
   209     | xs => [qty_str ^ "illegal variable(s) in the relation: " ^ commas_quote xs])
       
   210 
       
   211   val errs = illegal_rel_vars @ dup_vs @ extra_rty_tfrees @ extra_rel_tfrees @ illegal_rel_frees
       
   212 in
       
   213   if null errs then () else error (cat_lines errs)
       
   214 end
       
   215 
       
   216 (* check for existence of map functions *)
       
   217 fun map_check ctxt (_, (rty, _)) =
       
   218 let
       
   219   val thy = ProofContext.theory_of ctxt
       
   220 
       
   221   fun map_check_aux rty warns =
       
   222     case rty of
       
   223       Type (_, []) => warns
       
   224     | Type (s, _) => if maps_defined thy s then warns else s::warns
       
   225     | _ => warns
       
   226 
       
   227   val warns = map_check_aux rty []
       
   228 in
       
   229   if null warns then ()
       
   230   else warning ("No map function defined for " ^ commas warns ^
       
   231     ". This will cause problems later on.")
       
   232 end
       
   233 
       
   234 
       
   235 
       
   236 (*** interface and syntax setup ***)
       
   237 
       
   238 
       
   239 (* the ML-interface takes a list of 5-tuples consisting of:
       
   240 
       
   241  - the name of the quotient type
       
   242  - its free type variables (first argument)
       
   243  - its mixfix annotation
       
   244  - the type to be quotient
       
   245  - the relation according to which the type is quotient
       
   246 
       
   247  it opens a proof-state in which one has to show that the
       
   248  relations are equivalence relations
       
   249 *)
       
   250 
       
   251 fun quotient_type quot_list lthy =
       
   252 let
       
   253   (* sanity check *)
       
   254   val _ = List.app sanity_check quot_list
       
   255   val _ = List.app (map_check lthy) quot_list
       
   256 
       
   257   fun mk_goal (rty, rel) =
       
   258   let
       
   259     val equivp_ty = ([rty, rty] ---> @{typ bool}) --> @{typ bool}
       
   260   in
       
   261     HOLogic.mk_Trueprop (Const (@{const_name equivp}, equivp_ty) $ rel)
       
   262   end
       
   263 
       
   264   val goals = map (mk_goal o snd) quot_list
       
   265 
       
   266   fun after_qed thms lthy =
       
   267     fold_map mk_quotient_type (quot_list ~~ thms) lthy |> snd
       
   268 in
       
   269   theorem after_qed goals lthy
       
   270 end
       
   271 
       
   272 fun quotient_type_cmd specs lthy =
       
   273 let
       
   274   fun parse_spec ((((vs, qty_name), mx), rty_str), rel_str) lthy =
       
   275   let
       
   276     (* new parsing with proper declaration *)
       
   277     val rty = Syntax.read_typ lthy rty_str
       
   278     val lthy1 = Variable.declare_typ rty lthy
       
   279     val rel = 
       
   280       Syntax.parse_term lthy1 rel_str
       
   281       |> Syntax.type_constraint (rty --> rty --> @{typ bool}) 
       
   282       |> Syntax.check_term lthy1 
       
   283     val lthy2 = Variable.declare_term rel lthy1
       
   284   in
       
   285     (((vs, qty_name, mx), (rty, rel)), lthy2)
       
   286   end
       
   287 
       
   288   val (spec', lthy') = fold_map parse_spec specs lthy
       
   289 in
       
   290   quotient_type spec' lthy'
       
   291 end
       
   292 
       
   293 local
       
   294   structure P = OuterParse;
       
   295 in
       
   296 
       
   297 val quotspec_parser =
       
   298   P.and_list1 ((P.type_args -- P.binding) -- P.opt_infix -- 
       
   299     (P.$$$ "=" |-- P.typ) -- (P.$$$ "/" |-- P.term))
       
   300 end
       
   301 
       
   302 val _ = OuterKeyword.keyword "/"
       
   303 
       
   304 val _ =
       
   305   OuterSyntax.local_theory_to_proof "quotient_type"
       
   306     "quotient type definitions (require equivalence proofs)"
       
   307        OuterKeyword.thy_goal (quotspec_parser >> quotient_type_cmd)
       
   308 
       
   309 end; (* structure *)