Unused.thy
changeset 303 991b0e53f9dc
parent 301 40bb0c4718a6
child 685 b12f0321dfb0
equal deleted inserted replaced
302:a840c232e04e 303:991b0e53f9dc
    70       handle CTERM _ => Seq.empty
    70       handle CTERM _ => Seq.empty
    71 *}
    71 *}
    72 
    72 
    73 
    73 
    74 lemma trueprop_cong:
    74 lemma trueprop_cong:
    75   shows "(a ≡ b) ⟹ (Trueprop a ≡ Trueprop b)"
    75   shows "(a \<equiv> b) \<Longrightarrow> (Trueprop a \<equiv> Trueprop b)"
    76   by auto
    76   by auto
    77 
    77 
    78 lemma list_induct_hol4:
    78 lemma list_induct_hol4:
    79   fixes P :: "'a list ⇒ bool"
    79   fixes P :: "'a list \<Rightarrow> bool"
    80   assumes a: "((P []) ∧ (∀t. (P t) ⟶ (∀h. (P (h # t)))))"
    80   assumes a: "((P []) \<and> (\<forall>t. (P t) \<longrightarrow> (\<forall>h. (P (h # t)))))"
    81   shows "∀l. (P l)"
    81   shows "\<forall>l. (P l)"
    82   using a
    82   using a
    83   apply (rule_tac allI)
    83   apply (rule_tac allI)
    84   apply (induct_tac "l")
    84   apply (induct_tac "l")
    85   apply (simp)
    85   apply (simp)
    86   apply (metis)
    86   apply (metis)
    91   let
    91   let
    92     val ctxt = Variable.set_body false (Context.proof_of context);
    92     val ctxt = Variable.set_body false (Context.proof_of context);
    93     val ((_, [th']), _) = Variable.import true [th] ctxt;
    93     val ((_, [th']), _) = Variable.import true [th] ctxt;
    94   in th' end);
    94   in th' end);
    95 *}
    95 *}
       
    96 
       
    97 (*lemma equality_twice:
       
    98   "a = c \<Longrightarrow> b = d \<Longrightarrow> (a = b \<longrightarrow> c = d)"
       
    99 by auto*)