Quot/Nominal/Abs.thy
changeset 986 98375dde48fc
parent 984 8e2dd0b29466
child 988 a987b5acadc8
equal deleted inserted replaced
984:8e2dd0b29466 986:98375dde48fc
     1 theory LamEx
     1 theory LamEx
     2 imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "../QuotMain" 
     2 imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "../QuotMain" 
     3 begin
     3 begin
     4 
     4 
     5 datatype 'a ABS_raw = Abs_raw "atom list" "'a::pt"
     5 (* lemmas that should be in Nominal \<dots>\<dots>must be cleaned *)
       
     6 lemma in_permute_iff:
       
     7   shows "(p \<bullet> x) \<in> (p \<bullet> X) \<longleftrightarrow> x \<in> X"
       
     8 apply(unfold mem_def permute_fun_def)[1]
       
     9 apply(simp add: permute_bool_def) 
       
    10 done
       
    11 
       
    12 lemma fresh_star_permute_iff:
       
    13   shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x"
       
    14 apply(simp add: fresh_star_def)
       
    15 apply(auto)
       
    16 apply(drule_tac x="p \<bullet> xa" in bspec)
       
    17 apply(unfold mem_def permute_fun_def)[1] 
       
    18 apply(simp add: eqvts)
       
    19 apply(simp add: fresh_permute_iff)
       
    20 apply(rule_tac ?p1="- p" in fresh_permute_iff[THEN iffD1])
       
    21 apply(simp)
       
    22 apply(drule_tac x="- p \<bullet> xa" in bspec)
       
    23 apply(rule_tac ?p1="p" in in_permute_iff[THEN iffD1])
       
    24 apply(simp)
       
    25 apply(simp)
       
    26 done
       
    27 
       
    28 datatype 'a ABS_raw = Abs_raw "atom set" "'a::pt"
     6 
    29 
     7 primrec
    30 primrec
     8   Abs_raw_map
    31   Abs_raw_map
     9 where
    32 where
    10   "Abs_raw_map f (Abs_raw as x) = Abs_raw as (f x)"
    33   "Abs_raw_map f (Abs_raw as x) = Abs_raw as (f x)"
    33 end  
    56 end  
    34 
    57 
    35 inductive
    58 inductive
    36   alpha_abs :: "('a::pt) ABS_raw \<Rightarrow> 'a ABS_raw \<Rightarrow> bool"
    59   alpha_abs :: "('a::pt) ABS_raw \<Rightarrow> 'a ABS_raw \<Rightarrow> bool"
    37 where
    60 where
    38   "\<lbrakk>\<exists>pi. (supp x) - (set as) = (supp y) - (set bs) \<and>  ((supp x) - (set as)) \<sharp>* pi \<and> pi \<bullet> x = y\<rbrakk> 
    61   "\<lbrakk>\<exists>pi. (supp x) - as = (supp y) - bs \<and>  ((supp x) - as) \<sharp>* pi \<and> pi \<bullet> x = y\<rbrakk> 
    39    \<Longrightarrow> alpha_abs (Abs_raw as x) (Abs_raw bs y)"
    62    \<Longrightarrow> alpha_abs (Abs_raw as x) (Abs_raw bs y)"
    40 
    63 
    41 
    64 lemma alpha_reflp:
    42 lemma Abs_raw_eq1:
    65   shows "alpha_abs ab ab"
    43   assumes "alpha_abs (Abs_raw bs x) (Abs_raw bs y)"
    66 apply(induct ab)
    44   shows "x = y"
    67 apply(rule alpha_abs.intros)
    45 using assms
    68 apply(rule_tac x="0" in exI)
       
    69 apply(simp add: fresh_star_def fresh_zero_perm)
       
    70 done
       
    71 
       
    72 lemma alpha_symp:
       
    73   assumes a: "alpha_abs ab1 ab2"
       
    74   shows "alpha_abs ab2 ab1"
       
    75 using a
    46 apply(erule_tac alpha_abs.cases)
    76 apply(erule_tac alpha_abs.cases)
    47 apply(auto)
    77 apply(clarify)
    48 apply(drule sym)
    78 apply(rule alpha_abs.intros)
    49 apply(simp)
    79 apply(rule_tac x="- pi" in exI)
    50 sorry
    80 apply(auto)
    51 
    81 apply(auto simp add: fresh_star_def)
       
    82 apply(simp add: fresh_def supp_minus_perm)
       
    83 done
       
    84 
       
    85 lemma alpha_transp:
       
    86   assumes a1: "alpha_abs ab1 ab2"
       
    87   and     a2: "alpha_abs ab2 ab3"
       
    88   shows "alpha_abs ab1 ab3"
       
    89 using a1 a2
       
    90 apply(erule_tac alpha_abs.cases)
       
    91 apply(erule_tac alpha_abs.cases)
       
    92 apply(clarify)
       
    93 apply(rule alpha_abs.intros)
       
    94 apply(rule_tac x="pia + pi" in exI)
       
    95 apply(simp)
       
    96 apply(auto simp add: fresh_star_def)
       
    97 using supp_plus_perm
       
    98 apply(simp add: fresh_def)
       
    99 apply(blast)
       
   100 done
       
   101 
       
   102 lemma alpha_eqvt:
       
   103   assumes a: "alpha_abs ab1 ab2"
       
   104   shows "alpha_abs (p \<bullet> ab1) (p \<bullet> ab2)"
       
   105 using a
       
   106 apply(erule_tac alpha_abs.cases)
       
   107 apply(clarify)
       
   108 apply(simp)
       
   109 apply(rule alpha_abs.intros)
       
   110 apply(rule_tac x="p \<bullet> pi" in exI)
       
   111 apply(rule conjI)
       
   112 apply(simp add: supp_eqvt[symmetric])
       
   113 apply(simp add: Diff_eqvt[symmetric])
       
   114 apply(rule conjI)
       
   115 apply(simp add: supp_eqvt[symmetric])
       
   116 apply(simp add: Diff_eqvt[symmetric])
       
   117 apply(simp only: fresh_star_permute_iff)
       
   118 apply(simp add: permute_eqvt[symmetric])
       
   119 done
       
   120 
       
   121 lemma test1:
       
   122   assumes a1: "a \<notin> (supp x) - bs"
       
   123   and     a2: "b \<notin> (supp x) - bs"
       
   124   shows "alpha_abs (Abs_raw bs x) (Abs_raw ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x))"
       
   125 apply(rule alpha_abs.intros)
       
   126 apply(rule_tac x="(a \<rightleftharpoons> b)" in exI)
       
   127 apply(rule_tac conjI)
       
   128 apply(simp add: supp_eqvt[symmetric])
       
   129 apply(simp add: Diff_eqvt[symmetric])
       
   130 using a1 a2
       
   131 apply(simp add: swap_set_fresh)
       
   132 apply(rule conjI)
       
   133 prefer 2
       
   134 apply(simp)
       
   135 apply(simp add: fresh_star_def)
       
   136 apply(simp add: fresh_def)
       
   137 apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}")
       
   138 using a1 a2
       
   139 apply -
       
   140 apply(blast)
       
   141 apply(simp add: supp_swap)
       
   142 done
       
   143 
       
   144 fun
       
   145   s_test
       
   146 where
       
   147   "s_test (Abs_raw bs x) = (supp x) - bs"
       
   148 
       
   149 lemma s_test_lemma:
       
   150   assumes a: "alpha_abs x y" 
       
   151   shows "s_test x = s_test y"
       
   152 using a
       
   153 apply(induct)
       
   154 apply(simp)
       
   155 done
       
   156   
    52 
   157 
    53 quotient_type 'a ABS = "('a::pt) ABS_raw" / "alpha_abs::('a::pt) ABS_raw \<Rightarrow> 'a ABS_raw \<Rightarrow> bool"
   158 quotient_type 'a ABS = "('a::pt) ABS_raw" / "alpha_abs::('a::pt) ABS_raw \<Rightarrow> 'a ABS_raw \<Rightarrow> bool"
    54   sorry
   159   apply(rule equivpI)
       
   160   unfolding reflp_def symp_def transp_def
       
   161   apply(auto intro: alpha_reflp alpha_symp alpha_transp)
       
   162   done
    55 
   163 
    56 quotient_definition
   164 quotient_definition
    57    "Abs::atom list \<Rightarrow> ('a::pt) \<Rightarrow> 'a ABS"
   165    "Abs::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a ABS"
    58 as
   166 as
    59    "Abs_raw"
   167    "Abs_raw"
    60 
   168 
    61 lemma [quot_respect]:
   169 lemma [quot_respect]:
    62   shows "((op =) ===> (op =) ===> alpha_abs) Abs_raw Abs_raw"
   170   shows "((op =) ===> (op =) ===> alpha_abs) Abs_raw Abs_raw"
    63 apply(auto)
   171 apply(auto)
    64 apply(rule alpha_abs.intros)
   172 apply(rule alpha_reflp)
    65 apply(rule_tac x="0" in exI)
       
    66 apply(simp add: fresh_star_def fresh_zero_perm)
       
    67 done
   173 done
    68 
   174 
    69 lemma [quot_respect]:
   175 lemma [quot_respect]:
    70   shows "((op =) ===> alpha_abs ===> alpha_abs) permute permute"
   176   shows "((op =) ===> alpha_abs ===> alpha_abs) permute permute"
    71 apply(auto)
   177 apply(auto)
    72 sorry
   178 apply(simp add: alpha_eqvt)
       
   179 done
       
   180 
       
   181 lemma [quot_respect]:
       
   182   shows "(alpha_abs ===> (op =)) s_test s_test"
       
   183 apply(simp add: s_test_lemma)
       
   184 done
    73 
   185 
    74 lemma ABS_induct:
   186 lemma ABS_induct:
    75   "\<lbrakk>\<And>as (x::'a::pt). P (Abs as x)\<rbrakk> \<Longrightarrow> P t"
   187   "\<lbrakk>\<And>as (x::'a::pt). P (Abs as x)\<rbrakk> \<Longrightarrow> P t"
    76 apply(lifting ABS_raw.induct)
   188 apply(lifting ABS_raw.induct)
    77 done
   189 done
    78 
       
    79 lemma Abs_eq1:
       
    80   assumes "(Abs bs x) = (Abs bs y)"
       
    81   shows "x = y"
       
    82 using assms
       
    83 apply(lifting Abs_raw_eq1)
       
    84 done
       
    85 
       
    86 
   190 
    87 instantiation ABS :: (pt) pt
   191 instantiation ABS :: (pt) pt
    88 begin
   192 begin
    89 
   193 
    90 quotient_definition
   194 quotient_definition
   103   apply(induct_tac [!] x rule: ABS_induct)
   207   apply(induct_tac [!] x rule: ABS_induct)
   104   apply(simp_all)
   208   apply(simp_all)
   105   done
   209   done
   106 
   210 
   107 end
   211 end
   108   
   212 
       
   213 lemma test1_lifted:
       
   214   assumes a1: "a \<notin> (supp x) - bs"
       
   215   and     a2: "b \<notin> (supp x) - bs"
       
   216   shows "(Abs bs x) = (Abs ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x))"
       
   217 using a1 a2
       
   218 apply(lifting test1)
       
   219 done
       
   220 
   109 lemma Abs_supports:
   221 lemma Abs_supports:
   110   shows "(supp (as, x)) supports (Abs as x) "
   222   shows "((supp x) - as) supports (Abs as x) "
   111 unfolding supports_def
   223 unfolding supports_def
       
   224 apply(clarify)
       
   225 apply(simp (no_asm))
       
   226 apply(subst test1_lifted[symmetric])
       
   227 apply(simp_all)
       
   228 done
       
   229 
       
   230 quotient_definition
       
   231   "s_test_lifted :: ('a::pt) ABS \<Rightarrow> atom \<Rightarrow> bool"
       
   232 as
       
   233   "s_test::('a::pt) ABS_raw \<Rightarrow> atom \<Rightarrow> bool"
       
   234 
       
   235 lemma s_test_lifted_simp:
       
   236   shows "s_test_lifted (Abs bs x) = (supp x) - bs"
       
   237 apply(lifting s_test.simps(1))
       
   238 done
       
   239 
       
   240 lemma s_test_lifted_eqvt:
       
   241   shows "(p \<bullet> (s_test_lifted ab)) = s_test_lifted (p \<bullet> ab)"
       
   242 apply(induct ab rule: ABS_induct)
       
   243 apply(simp add: s_test_lifted_simp supp_eqvt Diff_eqvt)
       
   244 done
       
   245 
       
   246 lemma fresh_f_empty_supp:
       
   247   assumes a: "\<forall>p. p \<bullet> f = f"
       
   248   shows "a \<sharp> x \<Longrightarrow> a \<sharp> (f x)"
       
   249 apply(simp add: fresh_def)
       
   250 apply(simp add: supp_def)
       
   251 apply(simp add: permute_fun_app_eq)
       
   252 apply(simp add: a)
       
   253 apply(rule finite_subset)
       
   254 prefer 2
       
   255 apply(assumption)
       
   256 apply(auto)
       
   257 done
       
   258 
       
   259 
       
   260 lemma s_test_fresh_lemma:
       
   261   shows "(a \<sharp> Abs bs x) \<Longrightarrow> (a \<sharp> s_test_lifted (Abs bs x))"
       
   262 apply(rule fresh_f_empty_supp)
       
   263 apply(rule allI)
       
   264 apply(subst permute_fun_def)
       
   265 apply(simp add: s_test_lifted_eqvt)
       
   266 apply(simp)
       
   267 done
       
   268 
       
   269 lemma supp_finite_set:
       
   270   fixes S::"atom set"
       
   271   assumes "finite S"
       
   272   shows "supp S = S"
       
   273   apply(rule finite_supp_unique)
       
   274   apply(simp add: supports_def)
       
   275   apply(auto simp add: permute_set_eq swap_atom)[1]
       
   276   apply(metis)
       
   277   apply(rule assms)
       
   278   apply(auto simp add: permute_set_eq swap_atom)[1]
       
   279 done
       
   280 
       
   281 lemma s_test_subset:
       
   282   fixes x::"'a::fs"
       
   283   shows "((supp x) - as) \<subseteq> (supp (Abs as x))"
       
   284 apply(rule subsetI)
       
   285 apply(rule contrapos_pp)
       
   286 apply(assumption)
   112 unfolding fresh_def[symmetric]
   287 unfolding fresh_def[symmetric]
   113 apply(simp add: fresh_Pair swap_fresh_fresh)
   288 apply(drule_tac s_test_fresh_lemma)
       
   289 apply(simp only: s_test_lifted_simp)
       
   290 apply(simp add: fresh_def)
       
   291 apply(subgoal_tac "finite (supp x - as)")
       
   292 apply(simp add: supp_finite_set)
       
   293 apply(simp add: finite_supp)
       
   294 done
       
   295 
       
   296 lemma supp_Abs:
       
   297   fixes x::"'a::fs"
       
   298   shows "supp (Abs as x) = (supp x) - as"
       
   299 apply(rule subset_antisym)
       
   300 apply(rule supp_is_subset)
       
   301 apply(rule Abs_supports)
       
   302 apply(simp add: finite_supp)
       
   303 apply(rule s_test_subset)
   114 done
   304 done
   115 
   305 
   116 instance ABS :: (fs) fs
   306 instance ABS :: (fs) fs
   117 apply(default)
   307 apply(default)
   118 apply(induct_tac x rule: ABS_induct)
   308 apply(induct_tac x rule: ABS_induct)
   119 thm supports_finite
   309 apply(simp add: supp_Abs)
   120 apply(rule supports_finite)
   310 apply(simp add: finite_supp)
   121 apply(rule Abs_supports)
   311 done
   122 apply(simp add: supp_Pair finite_supp)
   312 
   123 done
   313 lemma fresh_abs1:
   124 
       
   125 lemma Abs_fresh1:
       
   126   fixes x::"'a::fs"
   314   fixes x::"'a::fs"
   127   assumes a1: "a \<sharp> bs" 
   315   shows "a \<sharp> Abs bs x = (a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x))"
   128   and     a2: "a \<sharp> x"
   316 apply(simp add: fresh_def)
   129   shows "a \<sharp> Abs bs x"
   317 apply(simp add: supp_Abs)
   130 proof -
   318 apply(auto)
   131   obtain c where 
   319 done
   132     fr: "c \<sharp> bs" "c \<sharp> x" "c \<sharp> Abs bs x" "sort_of c = sort_of a"
   320 
   133     apply(rule_tac X="supp (bs, x, Abs bs x)" in obtain_atom)
   321 done
   134     unfolding fresh_def[symmetric] 
   322 
   135     apply(auto simp add: supp_Pair finite_supp fresh_Pair fresh_atom)
       
   136     done
       
   137   have "(c \<rightleftharpoons> a) \<bullet> (Abs bs x) = Abs bs x" using a1 a2 fr(1) fr(2) 
       
   138     by (simp add: swap_fresh_fresh)
       
   139   moreover from fr(3) 
       
   140   have "((c \<rightleftharpoons> a) \<bullet> c) \<sharp> ((c \<rightleftharpoons> a) \<bullet>(Abs bs x))"
       
   141     by (simp only: fresh_permute_iff)
       
   142   ultimately show  "a \<sharp> Abs bs x" using fr(4) 
       
   143     by simp
       
   144 qed
       
   145 
       
   146 lemma Abs_fresh2:
       
   147   fixes x :: "'a::fs"
       
   148   assumes a1: "a \<sharp> Abs bs x" 
       
   149   and     a2: "a \<sharp> bs" 
       
   150   shows "a \<sharp> x"
       
   151 proof -
       
   152   obtain c where 
       
   153     fr: "c \<sharp> bs" "c \<sharp> x" "c \<sharp> Abs bs x" "sort_of c = sort_of a"
       
   154     apply(rule_tac X="supp (bs, x, Abs bs x)" in obtain_atom)
       
   155     unfolding fresh_def[symmetric] 
       
   156     apply(auto simp add: supp_Pair finite_supp fresh_Pair fresh_atom)
       
   157     done
       
   158   have "Abs bs x = (c \<rightleftharpoons> a) \<bullet> (Abs bs x)" using a1 fr(3) 
       
   159     by (simp only: swap_fresh_fresh)
       
   160   also have "\<dots> = Abs bs ((c \<rightleftharpoons> a) \<bullet> x)" using a2 fr(1) 
       
   161     by (simp add: swap_fresh_fresh)
       
   162   ultimately have "Abs bs x = Abs bs ((c \<rightleftharpoons> a) \<bullet> x)" by simp
       
   163   then have "x = (c \<rightleftharpoons> a) \<bullet> x" by (rule Abs_eq1)
       
   164   moreover from fr(2) 
       
   165   have "((c \<rightleftharpoons> a) \<bullet> c) \<sharp> ((c \<rightleftharpoons> a) \<bullet> x)"
       
   166     by (simp only: fresh_permute_iff)
       
   167   ultimately show  "a \<sharp> x" using fr(4) 
       
   168     by simp
       
   169 qed
       
   170 
       
   171 lemma Abs_fresh3:
       
   172   fixes x :: "'a::fs"
       
   173   assumes "a \<in> set bs"
       
   174   shows "a \<sharp> Abs bs x"
       
   175 proof -
       
   176   obtain c where 
       
   177     fr: "c \<sharp> a" "c \<sharp> x" "c \<sharp> Abs bs x" "sort_of c = sort_of a"
       
   178     apply(rule_tac X="supp (a, x, Abs bs x)" in obtain_atom)
       
   179     unfolding fresh_def[symmetric] 
       
   180     apply(auto simp add: supp_Pair finite_supp fresh_Pair fresh_atom)
       
   181     done
       
   182   from fr(3) have "((c \<rightleftharpoons> a) \<bullet> c) \<sharp> ((c \<rightleftharpoons> a) \<bullet> Abs bs x)"
       
   183     by (simp only: fresh_permute_iff)
       
   184   moreover
       
   185   have "((c \<rightleftharpoons> a) \<bullet> Abs bs x) = Abs bs x" using assms fr(1) fr(2) sorry
       
   186   ultimately
       
   187   show "a \<sharp> Abs bs x" using fr(4) by simp
       
   188 qed
       
   189 
       
   190 done
       
   191